基于混合网格的轨迹任意兴趣区域挖掘方法

MLSDA '13 Pub Date : 2013-12-02 DOI:10.1145/2542652.2542653
Chihiro Hio, Luke Bermingham, Guochen Cai, Kyungmi Lee, Ickjai Lee
{"title":"基于混合网格的轨迹任意兴趣区域挖掘方法","authors":"Chihiro Hio, Luke Bermingham, Guochen Cai, Kyungmi Lee, Ickjai Lee","doi":"10.1145/2542652.2542653","DOIUrl":null,"url":null,"abstract":"There is an increasing need for a trajectory pattern mining as the volume of available trajectory data grows at an unprecedented rate with the aid of mobile sensing. Region-of-interest mining identifies interesting hot spots that reveal trajectory concentrations. This article introduces an efficient and effective grid-based region-of-interest mining method that is linear to the number of grid cells, and is able to detect arbitrary shapes of regions-of-interest. The proposed algorithm is robust and applicable to continuous and discrete trajectories, and relatively insensitive to parameter values. Experiments show promising results which demonstrate benefits of the proposed algorithm.","PeriodicalId":248909,"journal":{"name":"MLSDA '13","volume":"15 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hybrid Grid-based Method for Mining Arbitrary Regions-of-Interest from Trajectories\",\"authors\":\"Chihiro Hio, Luke Bermingham, Guochen Cai, Kyungmi Lee, Ickjai Lee\",\"doi\":\"10.1145/2542652.2542653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing need for a trajectory pattern mining as the volume of available trajectory data grows at an unprecedented rate with the aid of mobile sensing. Region-of-interest mining identifies interesting hot spots that reveal trajectory concentrations. This article introduces an efficient and effective grid-based region-of-interest mining method that is linear to the number of grid cells, and is able to detect arbitrary shapes of regions-of-interest. The proposed algorithm is robust and applicable to continuous and discrete trajectories, and relatively insensitive to parameter values. Experiments show promising results which demonstrate benefits of the proposed algorithm.\",\"PeriodicalId\":248909,\"journal\":{\"name\":\"MLSDA '13\",\"volume\":\"15 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MLSDA '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2542652.2542653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLSDA '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542652.2542653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在移动传感的帮助下,可用的轨迹数据量以前所未有的速度增长,对轨迹模式挖掘的需求日益增加。兴趣区域挖掘识别出揭示轨迹集中的有趣热点。本文介绍了一种高效的基于网格的兴趣区域挖掘方法,该方法与网格单元数呈线性关系,能够检测兴趣区域的任意形状。该算法具有鲁棒性,适用于连续和离散轨迹,对参数值相对不敏感。实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Grid-based Method for Mining Arbitrary Regions-of-Interest from Trajectories
There is an increasing need for a trajectory pattern mining as the volume of available trajectory data grows at an unprecedented rate with the aid of mobile sensing. Region-of-interest mining identifies interesting hot spots that reveal trajectory concentrations. This article introduces an efficient and effective grid-based region-of-interest mining method that is linear to the number of grid cells, and is able to detect arbitrary shapes of regions-of-interest. The proposed algorithm is robust and applicable to continuous and discrete trajectories, and relatively insensitive to parameter values. Experiments show promising results which demonstrate benefits of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light-weight Online Predictive Data Aggregation for Wireless Sensor Networks Predicting Petroleum Reservoir Properties from Downhole Sensor Data using an Ensemble Model of Neural Networks Ensemble Feature Ranking for Shellfish Farm Closure Cause Identification The MOA Data Stream Mining Tool: A Mid-Term Report From Association Analysis to Causal Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1