基于深度表征学习的无所不在的准确地板估计系统

Hamada Rizk, H. Yamaguchi, T. Higashino, M. Youssef
{"title":"基于深度表征学习的无所不在的准确地板估计系统","authors":"Hamada Rizk, H. Yamaguchi, T. Higashino, M. Youssef","doi":"10.1145/3397536.3422202","DOIUrl":null,"url":null,"abstract":"Location-based services have undergone massive improvements over the last decade. Despite intense efforts in industry and academia, a pervasive infrastructure-free localization is still elusive. Towards making this possible, cellular-based systems have recently been proposed due to the wide-spread availability of the cellular networks and their support by commodity cellphones. However, these systems only consider locating the user in a 2D single floor environment, which reduces their value when used in multi-story buildings. In this paper, we propose CellRise, a deep learning-based system for floor identification in multi-story buildings using ubiquitous cellular signals. Due to the inherent challenges of leveraging the large propagation range and the overlap in the signal space between horizontal and vertical user movements, CellRise provides a novel module to generate floor-discriminative representations. These representations are then fed to a recurrent neural network that learns the sequential changes in signals to estimate the user floor level. Additionally, CellRise incorporates different modules that improve the deep model's generalization against avoiding overtraining and noise. These modules also permit CellRise to generalize to floors completely unseen during training. We have implemented and evaluated CellRise using two different buildings with a side-by-side comparison with the state-of-the-art floor estimation techniques. The results show that CellRise can accurately estimate the exact user's floor 97.7% of the time and within one floor error 100% of the time. This is better than the state-of-the-art systems by at least 17.9% in floor identification accuracy. In addition, we show that CellRise has robust performance in various challenging conditions.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Ubiquitous and Accurate Floor Estimation System Using Deep Representational Learning\",\"authors\":\"Hamada Rizk, H. Yamaguchi, T. Higashino, M. Youssef\",\"doi\":\"10.1145/3397536.3422202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-based services have undergone massive improvements over the last decade. Despite intense efforts in industry and academia, a pervasive infrastructure-free localization is still elusive. Towards making this possible, cellular-based systems have recently been proposed due to the wide-spread availability of the cellular networks and their support by commodity cellphones. However, these systems only consider locating the user in a 2D single floor environment, which reduces their value when used in multi-story buildings. In this paper, we propose CellRise, a deep learning-based system for floor identification in multi-story buildings using ubiquitous cellular signals. Due to the inherent challenges of leveraging the large propagation range and the overlap in the signal space between horizontal and vertical user movements, CellRise provides a novel module to generate floor-discriminative representations. These representations are then fed to a recurrent neural network that learns the sequential changes in signals to estimate the user floor level. Additionally, CellRise incorporates different modules that improve the deep model's generalization against avoiding overtraining and noise. These modules also permit CellRise to generalize to floors completely unseen during training. We have implemented and evaluated CellRise using two different buildings with a side-by-side comparison with the state-of-the-art floor estimation techniques. The results show that CellRise can accurately estimate the exact user's floor 97.7% of the time and within one floor error 100% of the time. This is better than the state-of-the-art systems by at least 17.9% in floor identification accuracy. In addition, we show that CellRise has robust performance in various challenging conditions.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在过去十年中,基于位置的服务经历了巨大的改进。尽管业界和学术界做出了巨大的努力,但普遍的无基础设施本地化仍然难以实现。为了实现这一目标,由于蜂窝网络的广泛可用性以及商用手机对其的支持,最近提出了基于蜂窝的系统。然而,这些系统只考虑在二维单层环境中定位用户,这在多层建筑中使用时降低了它们的价值。在本文中,我们提出了CellRise,这是一个基于深度学习的系统,用于使用无处不在的蜂窝信号在多层建筑中进行楼层识别。由于利用大传播范围和水平和垂直用户运动之间的信号空间重叠的固有挑战,CellRise提供了一个新颖的模块来生成地板区分表示。然后将这些表示馈送到一个循环神经网络,该网络学习信号的顺序变化以估计用户的楼层水平。此外,CellRise结合了不同的模块,以提高深度模型的泛化能力,避免过度训练和噪声。这些模块还允许CellRise在训练期间推广到完全看不见的楼层。我们使用两栋不同的建筑对CellRise进行了实施和评估,并与最先进的楼层估算技术进行了并排比较。结果表明,CellRise能够在97.7%的时间内准确地估计出用户的确切楼层,在一层内的误差为100%。这比最先进的系统在楼层识别精度上至少高出17.9%。此外,我们表明CellRise在各种具有挑战性的条件下具有强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Ubiquitous and Accurate Floor Estimation System Using Deep Representational Learning
Location-based services have undergone massive improvements over the last decade. Despite intense efforts in industry and academia, a pervasive infrastructure-free localization is still elusive. Towards making this possible, cellular-based systems have recently been proposed due to the wide-spread availability of the cellular networks and their support by commodity cellphones. However, these systems only consider locating the user in a 2D single floor environment, which reduces their value when used in multi-story buildings. In this paper, we propose CellRise, a deep learning-based system for floor identification in multi-story buildings using ubiquitous cellular signals. Due to the inherent challenges of leveraging the large propagation range and the overlap in the signal space between horizontal and vertical user movements, CellRise provides a novel module to generate floor-discriminative representations. These representations are then fed to a recurrent neural network that learns the sequential changes in signals to estimate the user floor level. Additionally, CellRise incorporates different modules that improve the deep model's generalization against avoiding overtraining and noise. These modules also permit CellRise to generalize to floors completely unseen during training. We have implemented and evaluated CellRise using two different buildings with a side-by-side comparison with the state-of-the-art floor estimation techniques. The results show that CellRise can accurately estimate the exact user's floor 97.7% of the time and within one floor error 100% of the time. This is better than the state-of-the-art systems by at least 17.9% in floor identification accuracy. In addition, we show that CellRise has robust performance in various challenging conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1