2.5D和3D IC中高速信令无碰撞互连的信号完整性设计

Hyunsuk Lee, Heegon Kim, Sumin Choi, Dong-Hyun Kim, Kyungjun Cho, Joungho Kim
{"title":"2.5D和3D IC中高速信令无碰撞互连的信号完整性设计","authors":"Hyunsuk Lee, Heegon Kim, Sumin Choi, Dong-Hyun Kim, Kyungjun Cho, Joungho Kim","doi":"10.1109/APEMC.2015.7175392","DOIUrl":null,"url":null,"abstract":"With the advent of 2.5D and 3D IC, micro bumps has been highlighted as the core technology for realization of 2.5D and 3D IC. However, due to the difficulties about fabrication of reliable and cost-effective micro bumps, resulting in decrease in the final chip yield. In this paper, we propose a bump-less interconnection for high-speed signaling in 2.5D and 3D IC. In the proposed interconnection, high speed signal is transmitted via coupling pads instead of micro bumps. Signal integrity of the proposed interconnection is analyzed by simulation in the frequency- and time-domain. For a more detailed analysis, the proposed interconnection and the interconnection with the micro bumps are compared. In addition, because the silicon, organic and glass interposer have been widely employed for the 2.5D and 3D IC packaging, signal integrity of the proposed interconnection on three types of the interposer is compared and analyzed.","PeriodicalId":325138,"journal":{"name":"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal integrity design of bump-less interconnection for high-speed signaling in 2.5D and 3D IC\",\"authors\":\"Hyunsuk Lee, Heegon Kim, Sumin Choi, Dong-Hyun Kim, Kyungjun Cho, Joungho Kim\",\"doi\":\"10.1109/APEMC.2015.7175392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of 2.5D and 3D IC, micro bumps has been highlighted as the core technology for realization of 2.5D and 3D IC. However, due to the difficulties about fabrication of reliable and cost-effective micro bumps, resulting in decrease in the final chip yield. In this paper, we propose a bump-less interconnection for high-speed signaling in 2.5D and 3D IC. In the proposed interconnection, high speed signal is transmitted via coupling pads instead of micro bumps. Signal integrity of the proposed interconnection is analyzed by simulation in the frequency- and time-domain. For a more detailed analysis, the proposed interconnection and the interconnection with the micro bumps are compared. In addition, because the silicon, organic and glass interposer have been widely employed for the 2.5D and 3D IC packaging, signal integrity of the proposed interconnection on three types of the interposer is compared and analyzed.\",\"PeriodicalId\":325138,\"journal\":{\"name\":\"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC.2015.7175392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2015.7175392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着2.5D和3D集成电路的出现,微凸点已成为实现2.5D和3D集成电路的核心技术,但由于难以制造可靠且具有成本效益的微凸点,导致最终芯片良率下降。在本文中,我们提出了一种用于2.5D和3D IC中高速信号的无碰撞互连。在所提出的互连中,高速信号通过耦合垫而不是微碰撞传输。通过频域和时域仿真分析了所提互连的信号完整性。为了进行更详细的分析,将所提出的互连与带有微凸起的互连进行了比较。此外,由于硅、有机和玻璃中间层已广泛应用于2.5D和3D IC封装,因此对三种中间层上所提出的互连信号完整性进行了比较和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signal integrity design of bump-less interconnection for high-speed signaling in 2.5D and 3D IC
With the advent of 2.5D and 3D IC, micro bumps has been highlighted as the core technology for realization of 2.5D and 3D IC. However, due to the difficulties about fabrication of reliable and cost-effective micro bumps, resulting in decrease in the final chip yield. In this paper, we propose a bump-less interconnection for high-speed signaling in 2.5D and 3D IC. In the proposed interconnection, high speed signal is transmitted via coupling pads instead of micro bumps. Signal integrity of the proposed interconnection is analyzed by simulation in the frequency- and time-domain. For a more detailed analysis, the proposed interconnection and the interconnection with the micro bumps are compared. In addition, because the silicon, organic and glass interposer have been widely employed for the 2.5D and 3D IC packaging, signal integrity of the proposed interconnection on three types of the interposer is compared and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Near field measurement for EMC validation of electronics board in IMA A two-step approach for EMI evaluation of a wearable ECG Asymptotic analysis of scattering from reflectarray antennas for the near-field focused applications A collective uniform geometrical theory of diffraction ray field analysis of very long and narrow finite planar arrays The effect of magneto-dielectric absorbing coating on unsymmetrical antenna cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1