利用卷积神经随机森林对显微镜图像中的初级纤毛进行分类

Sundaresh Ram, Mohammed S. Majdi, Jeffrey J. Rodríguez, Yang Gao, H. Brooks
{"title":"利用卷积神经随机森林对显微镜图像中的初级纤毛进行分类","authors":"Sundaresh Ram, Mohammed S. Majdi, Jeffrey J. Rodríguez, Yang Gao, H. Brooks","doi":"10.1109/SSIAI.2018.8470320","DOIUrl":null,"url":null,"abstract":"Accurate detection and classification of primary cilia in microscopy images is an essential and fundamental task for many biological studies including diagnosis of primary ciliary dyskinesia. Manual detection and classification of individual primary cilia by visual inspection is time consuming, and prone to induce subjective bias. However, automation of this process is challenging as well, due to clutter, bleed-through, imaging noise, and the similar characteristics of the non-cilia candidates present within the image. We propose a convolutional neural random forest classifier that combines a convolutional neural network with random decision forests to classify the primary cilia in fluorescence microscopy images. We compare the performance of the proposed classifier with that of an unsupervised k-means classifier and a supervised multi-layer perceptron classifier on real data consisting of 8 representative cilia images, containing more than 2300 primary cilia using precision/recall rates, ROC curves, AUC, and Fβ-score for classification accuracy. Results show that our proposed classifier achieves better classification accuracy.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of Primary Cilia in Microscopy Images Using Convolutional Neural Random Forests\",\"authors\":\"Sundaresh Ram, Mohammed S. Majdi, Jeffrey J. Rodríguez, Yang Gao, H. Brooks\",\"doi\":\"10.1109/SSIAI.2018.8470320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate detection and classification of primary cilia in microscopy images is an essential and fundamental task for many biological studies including diagnosis of primary ciliary dyskinesia. Manual detection and classification of individual primary cilia by visual inspection is time consuming, and prone to induce subjective bias. However, automation of this process is challenging as well, due to clutter, bleed-through, imaging noise, and the similar characteristics of the non-cilia candidates present within the image. We propose a convolutional neural random forest classifier that combines a convolutional neural network with random decision forests to classify the primary cilia in fluorescence microscopy images. We compare the performance of the proposed classifier with that of an unsupervised k-means classifier and a supervised multi-layer perceptron classifier on real data consisting of 8 representative cilia images, containing more than 2300 primary cilia using precision/recall rates, ROC curves, AUC, and Fβ-score for classification accuracy. Results show that our proposed classifier achieves better classification accuracy.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在显微镜图像中准确检测和分类初级纤毛是许多生物学研究的基本任务,包括原发性纤毛运动障碍的诊断。人工肉眼检查单个纤毛的检测和分类费时,且容易引起主观偏差。然而,由于图像中存在杂乱、透血、成像噪声和非纤毛候选物的相似特征,该过程的自动化也具有挑战性。本文提出了一种卷积神经随机森林分类器,将卷积神经网络与随机决策森林相结合,对荧光显微镜图像中的初级纤毛进行分类。我们将所提出的分类器与无监督k-means分类器和有监督多层感知器分类器的性能进行了比较,这些分类器由8个代表性的纤毛图像组成,包含2300多个原发纤毛,使用精度/召回率、ROC曲线、AUC和分类精度的f β得分。结果表明,本文提出的分类器具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Primary Cilia in Microscopy Images Using Convolutional Neural Random Forests
Accurate detection and classification of primary cilia in microscopy images is an essential and fundamental task for many biological studies including diagnosis of primary ciliary dyskinesia. Manual detection and classification of individual primary cilia by visual inspection is time consuming, and prone to induce subjective bias. However, automation of this process is challenging as well, due to clutter, bleed-through, imaging noise, and the similar characteristics of the non-cilia candidates present within the image. We propose a convolutional neural random forest classifier that combines a convolutional neural network with random decision forests to classify the primary cilia in fluorescence microscopy images. We compare the performance of the proposed classifier with that of an unsupervised k-means classifier and a supervised multi-layer perceptron classifier on real data consisting of 8 representative cilia images, containing more than 2300 primary cilia using precision/recall rates, ROC curves, AUC, and Fβ-score for classification accuracy. Results show that our proposed classifier achieves better classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1