使用滚动原点重采样对完整版的GureKDDCup、UNSW-NB15和CIDDS-001 NIDS数据集进行基准测试

Yee Jian Chew, Nicholas Lee, S. Ooi, Kok-Seng Wong, Y. Pang
{"title":"使用滚动原点重采样对完整版的GureKDDCup、UNSW-NB15和CIDDS-001 NIDS数据集进行基准测试","authors":"Yee Jian Chew, Nicholas Lee, S. Ooi, Kok-Seng Wong, Y. Pang","doi":"10.1080/19393555.2021.1985191","DOIUrl":null,"url":null,"abstract":"ABSTRACT Network intrusion detection system (NIDS) is a system that analyses network traffic to flag malicious traffic or suspicious activities. Several recent NIDS datasets have been published, however, the lack of baseline experimental results on the full version of datasets had made it difficult for researchers to perform benchmarking. As the train-test distribution of the datasets has yet to be pre-defined by the creators, this further obstruct the researchers to compare the performance unbiasedly across each of the machine classifiers. Moreover, cross-validation resampling scheme have also been addressed in the literatures to be inappropriate in the domain of NIDS. Thus, rolling-origin – a standard resampling technique which is also known as a common cross-validation scheme in the forecasting domain is employed to allocate the training and testing distributions. In this paper, rigorous experiments are conducted on the full version of the three recent NIDS datasets: GureKDDCup, UNSW-NB15, and CIDDS-001. While the datasets chosen might not be the latest available datasets, we have selected them as they include the essential IP address fields which are usually missing or removed due to some sort of privacy concerns. To deliver the baseline empirical results, 10 well-known classifiers from Weka are utilized.","PeriodicalId":103842,"journal":{"name":"Information Security Journal: A Global Perspective","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Benchmarking full version of GureKDDCup, UNSW-NB15, and CIDDS-001 NIDS datasets using rolling-origin resampling\",\"authors\":\"Yee Jian Chew, Nicholas Lee, S. Ooi, Kok-Seng Wong, Y. Pang\",\"doi\":\"10.1080/19393555.2021.1985191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Network intrusion detection system (NIDS) is a system that analyses network traffic to flag malicious traffic or suspicious activities. Several recent NIDS datasets have been published, however, the lack of baseline experimental results on the full version of datasets had made it difficult for researchers to perform benchmarking. As the train-test distribution of the datasets has yet to be pre-defined by the creators, this further obstruct the researchers to compare the performance unbiasedly across each of the machine classifiers. Moreover, cross-validation resampling scheme have also been addressed in the literatures to be inappropriate in the domain of NIDS. Thus, rolling-origin – a standard resampling technique which is also known as a common cross-validation scheme in the forecasting domain is employed to allocate the training and testing distributions. In this paper, rigorous experiments are conducted on the full version of the three recent NIDS datasets: GureKDDCup, UNSW-NB15, and CIDDS-001. While the datasets chosen might not be the latest available datasets, we have selected them as they include the essential IP address fields which are usually missing or removed due to some sort of privacy concerns. To deliver the baseline empirical results, 10 well-known classifiers from Weka are utilized.\",\"PeriodicalId\":103842,\"journal\":{\"name\":\"Information Security Journal: A Global Perspective\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Security Journal: A Global Perspective\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19393555.2021.1985191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Journal: A Global Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19393555.2021.1985191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络入侵检测系统(NIDS)是一种通过分析网络流量来标记恶意流量或可疑活动的系统。最近已经发表了几个NIDS数据集,但是,由于缺乏完整版本数据集的基线实验结果,使得研究人员难以进行基准测试。由于数据集的训练测试分布尚未由创建者预先定义,这进一步阻碍了研究人员在每个机器分类器之间公正地比较性能。此外,交叉验证重采样方案也在文献中被认为不适合NIDS领域。因此,采用滚动原点-一种标准重采样技术,也称为预测领域的常见交叉验证方案来分配训练和测试分布。本文在三个最新的NIDS数据集:GureKDDCup、UNSW-NB15和CIDDS-001的完整版本上进行了严格的实验。虽然所选择的数据集可能不是最新的可用数据集,但我们选择它们是因为它们包含了基本的IP地址字段,这些字段通常由于某种隐私问题而丢失或删除。为了提供基线经验结果,使用了来自Weka的10个知名分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking full version of GureKDDCup, UNSW-NB15, and CIDDS-001 NIDS datasets using rolling-origin resampling
ABSTRACT Network intrusion detection system (NIDS) is a system that analyses network traffic to flag malicious traffic or suspicious activities. Several recent NIDS datasets have been published, however, the lack of baseline experimental results on the full version of datasets had made it difficult for researchers to perform benchmarking. As the train-test distribution of the datasets has yet to be pre-defined by the creators, this further obstruct the researchers to compare the performance unbiasedly across each of the machine classifiers. Moreover, cross-validation resampling scheme have also been addressed in the literatures to be inappropriate in the domain of NIDS. Thus, rolling-origin – a standard resampling technique which is also known as a common cross-validation scheme in the forecasting domain is employed to allocate the training and testing distributions. In this paper, rigorous experiments are conducted on the full version of the three recent NIDS datasets: GureKDDCup, UNSW-NB15, and CIDDS-001. While the datasets chosen might not be the latest available datasets, we have selected them as they include the essential IP address fields which are usually missing or removed due to some sort of privacy concerns. To deliver the baseline empirical results, 10 well-known classifiers from Weka are utilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“The pull to do nothing would be strong”: limitations & opportunities in reporting insider threats Prevention of DDoS attacks: a comprehensive review and future directions Towards improving the security of wireless networks using secured session keys Evaluating the status of information security management in faculty libraries: a case study of Allameh Tabatabai University Privacy preservation of inventory management using adaptive key generation with Hyperledger blockchain technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1