张量LU和QR分解及其随机化算法

Yuefeng Zhu, Yimin Wei
{"title":"张量LU和QR分解及其随机化算法","authors":"Yuefeng Zhu, Yimin Wei","doi":"10.52547/cmcma.1.1.1","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two decompositions extended from matrices to tensors, including LU and QR decompositions with their rank-revealing and randomized variations. We give the growth order analysis of error of the tensor QR (t-QR) and tensor LU (t-LU) decompositions. Growth order of error and running time are shown by numerical examples. We test our methods by compressing and analyzing the image-based data, showing that the performance of tensor randomized QR decomposition is better than the tensor randomized SVD (t-rSVD) in terms of the accuracy, running time and memory. Copyright c (cid:13) 2022 Shahid Beheshti University.","PeriodicalId":207178,"journal":{"name":"Computational Mathematics and Computer Modeling with Applications (CMCMA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tensor LU and QR decompositions and their randomized algorithms\",\"authors\":\"Yuefeng Zhu, Yimin Wei\",\"doi\":\"10.52547/cmcma.1.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two decompositions extended from matrices to tensors, including LU and QR decompositions with their rank-revealing and randomized variations. We give the growth order analysis of error of the tensor QR (t-QR) and tensor LU (t-LU) decompositions. Growth order of error and running time are shown by numerical examples. We test our methods by compressing and analyzing the image-based data, showing that the performance of tensor randomized QR decomposition is better than the tensor randomized SVD (t-rSVD) in terms of the accuracy, running time and memory. Copyright c (cid:13) 2022 Shahid Beheshti University.\",\"PeriodicalId\":207178,\"journal\":{\"name\":\"Computational Mathematics and Computer Modeling with Applications (CMCMA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Computer Modeling with Applications (CMCMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/cmcma.1.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Computer Modeling with Applications (CMCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/cmcma.1.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了两种从矩阵扩展到张量的分解方法,包括LU分解和QR分解,它们具有揭示秩和随机变化的特性。给出了张量QR (t-QR)和张量LU (t-LU)分解误差的生长阶分析。通过数值算例说明了误差的增长顺序和运行时间。我们通过压缩和分析基于图像的数据来测试我们的方法,结果表明,张量随机QR分解在精度、运行时间和内存方面都优于张量随机SVD (t-rSVD)。沙希德·贝赫什蒂大学版权所有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor LU and QR decompositions and their randomized algorithms
In this paper, we propose two decompositions extended from matrices to tensors, including LU and QR decompositions with their rank-revealing and randomized variations. We give the growth order analysis of error of the tensor QR (t-QR) and tensor LU (t-LU) decompositions. Growth order of error and running time are shown by numerical examples. We test our methods by compressing and analyzing the image-based data, showing that the performance of tensor randomized QR decomposition is better than the tensor randomized SVD (t-rSVD) in terms of the accuracy, running time and memory. Copyright c (cid:13) 2022 Shahid Beheshti University.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ball comparison between three fourth convergence order schemes for nonlinear equations Solving parameterized generalized‎ ‎inverse eigenvalue problems via Golub-Kahan bidiagonalization On the semi-local convergence of the Homeier method in Banach space for solving equations From symplectic eigenvalues of positive definite matrices to their pseudo-orthogonal eigenvalues Tensor LU and QR decompositions and their randomized algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1