{"title":"自主全方位移动机器人的多尺度运动控制方法","authors":"Masaki Takahashi, Takafumi Suzuki","doi":"10.5220/0002217004490452","DOIUrl":null,"url":null,"abstract":"Abstract: This paper proposes a hierarchical moving control method for autonomous omni-directional mobile robot to achieve both safe and effective movement in a dynamic environment with moving objects such as humans. In the method, the movement of the robot can be realized based on prediction of the movement of obstacles by taking account of time scale differences. In this paper, the design method of the proposed method based on the virtual potential approach is proposed. In the method, modules that generate the potential field are structured hierarchically based on the prediction time to each problem. To verify the effectiveness of the proposed method, the numerical simulations and the experiments using a real robot are carried out. From the results, it is confirmed that the robot with the proposed method can realize safe and efficient movement in dynamic environment.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi Scale Moving Control Method for Autonomous Omni-directional Mobile Robot\",\"authors\":\"Masaki Takahashi, Takafumi Suzuki\",\"doi\":\"10.5220/0002217004490452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: This paper proposes a hierarchical moving control method for autonomous omni-directional mobile robot to achieve both safe and effective movement in a dynamic environment with moving objects such as humans. In the method, the movement of the robot can be realized based on prediction of the movement of obstacles by taking account of time scale differences. In this paper, the design method of the proposed method based on the virtual potential approach is proposed. In the method, modules that generate the potential field are structured hierarchically based on the prediction time to each problem. To verify the effectiveness of the proposed method, the numerical simulations and the experiments using a real robot are carried out. From the results, it is confirmed that the robot with the proposed method can realize safe and efficient movement in dynamic environment.\",\"PeriodicalId\":302311,\"journal\":{\"name\":\"ICINCO-RA\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICINCO-RA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002217004490452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002217004490452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi Scale Moving Control Method for Autonomous Omni-directional Mobile Robot
Abstract: This paper proposes a hierarchical moving control method for autonomous omni-directional mobile robot to achieve both safe and effective movement in a dynamic environment with moving objects such as humans. In the method, the movement of the robot can be realized based on prediction of the movement of obstacles by taking account of time scale differences. In this paper, the design method of the proposed method based on the virtual potential approach is proposed. In the method, modules that generate the potential field are structured hierarchically based on the prediction time to each problem. To verify the effectiveness of the proposed method, the numerical simulations and the experiments using a real robot are carried out. From the results, it is confirmed that the robot with the proposed method can realize safe and efficient movement in dynamic environment.