基于人工智能监测与预测数据的弹性量化

D. Achillopoulou, N. K. Stamataki, A. Psathas, L. Iliadis, A. Karabinis
{"title":"基于人工智能监测与预测数据的弹性量化","authors":"D. Achillopoulou, N. K. Stamataki, A. Psathas, L. Iliadis, A. Karabinis","doi":"10.2749/nanjing.2022.1715","DOIUrl":null,"url":null,"abstract":"Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. Towards this direction, this paper develops a new methodology that uses real monitoring data and Artificial Intelligence (AI) algorithms to quantify the resilience based on future traffic load predictions of functionality. It includes the case study of the “Hollandse Brug” bridge in the Netherlands considering strains and traffic load predictions and other external. Resilience is derived as a function of both functional and structural parameters throughout the lifecycle. The quantification is supported by sustainability indices and key performance indicators representing the traffic flow, the structural integrity and the sustainability level of the asset.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)\",\"authors\":\"D. Achillopoulou, N. K. Stamataki, A. Psathas, L. Iliadis, A. Karabinis\",\"doi\":\"10.2749/nanjing.2022.1715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. Towards this direction, this paper develops a new methodology that uses real monitoring data and Artificial Intelligence (AI) algorithms to quantify the resilience based on future traffic load predictions of functionality. It includes the case study of the “Hollandse Brug” bridge in the Netherlands considering strains and traffic load predictions and other external. Resilience is derived as a function of both functional and structural parameters throughout the lifecycle. The quantification is supported by sustainability indices and key performance indicators representing the traffic flow, the structural integrity and the sustainability level of the asset.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.1715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.1715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,对弹性基础设施资产的需求不断增加。为了支持弹性文档,结构健康监测(SHM)数据以及流量负载是必要的。这些诊断和功能数据可以作为预测未来资产性能的基础。朝着这个方向,本文开发了一种新的方法,该方法使用真实的监控数据和人工智能(AI)算法来量化基于未来交通负荷预测的功能的弹性。它包括荷兰“Hollandse Brug”大桥的案例研究,考虑了压力和交通负荷预测以及其他外部因素。弹性是整个生命周期中功能和结构参数的函数。量化由可持续性指数和关键绩效指标支持,这些指标代表了交通流量、结构完整性和资产的可持续性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)
Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. Towards this direction, this paper develops a new methodology that uses real monitoring data and Artificial Intelligence (AI) algorithms to quantify the resilience based on future traffic load predictions of functionality. It includes the case study of the “Hollandse Brug” bridge in the Netherlands considering strains and traffic load predictions and other external. Resilience is derived as a function of both functional and structural parameters throughout the lifecycle. The quantification is supported by sustainability indices and key performance indicators representing the traffic flow, the structural integrity and the sustainability level of the asset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FE Modeling of the Interfacial Behaviour of Precast Multi-box Girder The Behavior of Long-span Suspended Footbridge Under Wind Load The Durability and SHM System of Hong Kong-Zhuhai-Macao Bridge Study on the Influence of Bridge Expansion Joints on Vehicle-Track- Bridge System Numerical Examination in Bridge Responses due to Fracture of Truss Member in a Steel Truss Bridge under Vehicle Loadings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1