{"title":"康复机器人软件安全系统的设计方法","authors":"S. Roderick, C. Carignan","doi":"10.1109/ICORR.2005.1501096","DOIUrl":null,"url":null,"abstract":"This paper presents a system-level approach to the design of a safety-critical robotic system that is sufficiently safe to satisfy human-subject safety criteria. This system design approach utilizes preliminary hazard analysis, and fault tree analysis, and was successfully applied to a dexterous space robot designed to fly on NASA's space shuttle. An application of this approach to a shoulder rehabilitation exoskeleton would be presented and shown to improve the safety of the overall system.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An approach to designing software safety systems for rehabilitation robots\",\"authors\":\"S. Roderick, C. Carignan\",\"doi\":\"10.1109/ICORR.2005.1501096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system-level approach to the design of a safety-critical robotic system that is sufficiently safe to satisfy human-subject safety criteria. This system design approach utilizes preliminary hazard analysis, and fault tree analysis, and was successfully applied to a dexterous space robot designed to fly on NASA's space shuttle. An application of this approach to a shoulder rehabilitation exoskeleton would be presented and shown to improve the safety of the overall system.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach to designing software safety systems for rehabilitation robots
This paper presents a system-level approach to the design of a safety-critical robotic system that is sufficiently safe to satisfy human-subject safety criteria. This system design approach utilizes preliminary hazard analysis, and fault tree analysis, and was successfully applied to a dexterous space robot designed to fly on NASA's space shuttle. An application of this approach to a shoulder rehabilitation exoskeleton would be presented and shown to improve the safety of the overall system.