土地利用、土地利用变化和林业卫星图像分析:卢旺达基加利试点研究

Bright Aboh, Alphonse Mutabazi
{"title":"土地利用、土地利用变化和林业卫星图像分析:卢旺达基加利试点研究","authors":"Bright Aboh, Alphonse Mutabazi","doi":"10.1145/3378393.3402268","DOIUrl":null,"url":null,"abstract":"Estimating greenhouse gases from the Agriculture, Forestry and Other land Use (AFOLU) sector is very challenging partly due to the unavailability of data (particularly for land use and land use change sectors) and inadequate experts to analyze this data in case it is available. We used Collect Earth together with Machine Learning techniques to be able to predict and classify all the land use types based on some few points collected using Collect Earth. We investigated the adoption of this tool and technology in Rwanda to help its national and sub-national inventories. The use of Collect Earth and the Machine Learning (ML) implementation will help Rwanda monitor and predict its Land Use, Land Use Change and Forestry in a cost effective manner whiles enhancing the quality of reports submitted to national and international bodies whiles introducing a new approach. Among the classification algorithms we tested, we had an overall classification accuracy of 97% using the Classification and Regression Trees (CART) algorithm to predict the six land Use classes across the country.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Satellite imagery analysis for Land Use, Land Use Change and Forestry: A pilot study in Kigali, Rwanda\",\"authors\":\"Bright Aboh, Alphonse Mutabazi\",\"doi\":\"10.1145/3378393.3402268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating greenhouse gases from the Agriculture, Forestry and Other land Use (AFOLU) sector is very challenging partly due to the unavailability of data (particularly for land use and land use change sectors) and inadequate experts to analyze this data in case it is available. We used Collect Earth together with Machine Learning techniques to be able to predict and classify all the land use types based on some few points collected using Collect Earth. We investigated the adoption of this tool and technology in Rwanda to help its national and sub-national inventories. The use of Collect Earth and the Machine Learning (ML) implementation will help Rwanda monitor and predict its Land Use, Land Use Change and Forestry in a cost effective manner whiles enhancing the quality of reports submitted to national and international bodies whiles introducing a new approach. Among the classification algorithms we tested, we had an overall classification accuracy of 97% using the Classification and Regression Trees (CART) algorithm to predict the six land Use classes across the country.\",\"PeriodicalId\":176951,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378393.3402268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

估算农业、林业和其他土地利用(AFOLU)部门的温室气体非常具有挑战性,部分原因是无法获得数据(特别是土地利用和土地利用变化部门的数据),而且在有数据的情况下,没有足够的专家对这些数据进行分析。我们将Collect Earth与机器学习技术结合使用,能够基于Collect Earth收集到的一些点来预测和分类所有的土地使用类型。我们调查了该工具和技术在卢旺达的采用情况,以帮助编制国家和地方清单。Collect Earth的使用和机器学习(ML)的实施将帮助卢旺达以具有成本效益的方式监测和预测其土地利用、土地利用变化和林业,同时提高提交给国家和国际机构的报告的质量,同时引入一种新方法。在我们测试的分类算法中,我们使用分类和回归树(CART)算法预测全国六个土地利用类别的总体分类准确率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellite imagery analysis for Land Use, Land Use Change and Forestry: A pilot study in Kigali, Rwanda
Estimating greenhouse gases from the Agriculture, Forestry and Other land Use (AFOLU) sector is very challenging partly due to the unavailability of data (particularly for land use and land use change sectors) and inadequate experts to analyze this data in case it is available. We used Collect Earth together with Machine Learning techniques to be able to predict and classify all the land use types based on some few points collected using Collect Earth. We investigated the adoption of this tool and technology in Rwanda to help its national and sub-national inventories. The use of Collect Earth and the Machine Learning (ML) implementation will help Rwanda monitor and predict its Land Use, Land Use Change and Forestry in a cost effective manner whiles enhancing the quality of reports submitted to national and international bodies whiles introducing a new approach. Among the classification algorithms we tested, we had an overall classification accuracy of 97% using the Classification and Regression Trees (CART) algorithm to predict the six land Use classes across the country.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Features from Online Forums to Meet Social Needs of Breast Cancer Patients ICTs as Enablers of Resilient Social Capital for Ethnic Peace Persuasive information campaign to save water in Universities: An option for water-stressed areas? The "opaque panopticon": Why publishing data online doesn't make the State transparent? The case of India's livelihood program Competitive Cities: Establishing a Classification Model using Data Science-related Jobs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1