快速和健全的随机生成自动化测试和基准在目标Caml

Benjamin Canou, Alexis Darrasse
{"title":"快速和健全的随机生成自动化测试和基准在目标Caml","authors":"Benjamin Canou, Alexis Darrasse","doi":"10.1145/1596627.1596637","DOIUrl":null,"url":null,"abstract":"Numerous software testing methods involve random generation of data structures. However, random sampling methods currently in use by testing frameworks are not satisfactory: often manually written by the programmer or at best extracted in an ad-hoc way relying on no theoretical background. On the other end, random sampling methods with good theoretical properties exist but have a too high cost to be used in testing, in particular when large inputs are needed. In this paper we describe how we applied the recently developed Boltzmann model of random generation to algebraic data types. We obtain a fully automatic way to derive random generators from Objective Caml type definitions. These generators have linear complexity and, the generation method being uniform, can also be used as a sound sampling back-end for benchmarking tools. As a result, we provide testing and benchmarking frameworks with a sound and fast generation basis. We also provide a testing and benchmarking library, available for download, showing the viability of this experiment.","PeriodicalId":218033,"journal":{"name":"Proceedings of the 2009 ACM SIGPLAN workshop on ML","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fast and sound random generation for automated testing and benchmarking in objective Caml\",\"authors\":\"Benjamin Canou, Alexis Darrasse\",\"doi\":\"10.1145/1596627.1596637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous software testing methods involve random generation of data structures. However, random sampling methods currently in use by testing frameworks are not satisfactory: often manually written by the programmer or at best extracted in an ad-hoc way relying on no theoretical background. On the other end, random sampling methods with good theoretical properties exist but have a too high cost to be used in testing, in particular when large inputs are needed. In this paper we describe how we applied the recently developed Boltzmann model of random generation to algebraic data types. We obtain a fully automatic way to derive random generators from Objective Caml type definitions. These generators have linear complexity and, the generation method being uniform, can also be used as a sound sampling back-end for benchmarking tools. As a result, we provide testing and benchmarking frameworks with a sound and fast generation basis. We also provide a testing and benchmarking library, available for download, showing the viability of this experiment.\",\"PeriodicalId\":218033,\"journal\":{\"name\":\"Proceedings of the 2009 ACM SIGPLAN workshop on ML\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2009 ACM SIGPLAN workshop on ML\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1596627.1596637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGPLAN workshop on ML","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596627.1596637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

许多软件测试方法涉及随机生成数据结构。然而,测试框架目前使用的随机抽样方法并不令人满意:通常是由程序员手工编写的,或者充其量是在没有理论背景的情况下以一种特别的方式提取出来的。另一方面,存在具有良好理论性质的随机抽样方法,但在测试中使用成本太高,特别是在需要大输入的情况下。在本文中,我们描述了我们如何将最近发展的随机生成玻尔兹曼模型应用于代数数据类型。我们从objectcaml类型定义中获得了一种完全自动的方法来派生随机生成器。这些生成器具有线性复杂性,并且生成方法是统一的,也可以用作基准测试工具的声音采样后端。因此,我们提供了具有健全和快速生成基础的测试和基准测试框架。我们还提供了一个可供下载的测试和基准库,显示了该实验的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and sound random generation for automated testing and benchmarking in objective Caml
Numerous software testing methods involve random generation of data structures. However, random sampling methods currently in use by testing frameworks are not satisfactory: often manually written by the programmer or at best extracted in an ad-hoc way relying on no theoretical background. On the other end, random sampling methods with good theoretical properties exist but have a too high cost to be used in testing, in particular when large inputs are needed. In this paper we describe how we applied the recently developed Boltzmann model of random generation to algebraic data types. We obtain a fully automatic way to derive random generators from Objective Caml type definitions. These generators have linear complexity and, the generation method being uniform, can also be used as a sound sampling back-end for benchmarking tools. As a result, we provide testing and benchmarking frameworks with a sound and fast generation basis. We also provide a testing and benchmarking library, available for download, showing the viability of this experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cryptographic protocol compiler for multiparty sessions Session details: Implementation Direct implementation of shift and reset in the MinCaml compiler QML: explicit first-class polymorphism for ML Correctly translating concurrency primitives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1