基于人工智能优化控制器的光伏系统最大功率跟踪比较

Ayush Verma, S. Yadav, Ankita Arora, Kartikey Singh
{"title":"基于人工智能优化控制器的光伏系统最大功率跟踪比较","authors":"Ayush Verma, S. Yadav, Ankita Arora, Kartikey Singh","doi":"10.1109/incet49848.2020.9154109","DOIUrl":null,"url":null,"abstract":"This paper analyzes performance of Artificial Intelligence based optimization controller for the comparative study of maximum power point tracking (MPPT) in PV Systems. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) control methods are the two such techniques used, and are simulated in MATLAB-Simulink using Trina Solar TSM-250PD05.08. The simulation results suitably depict the performance of these methods on the basis of some parameters like their rise time, settling time, time taken to reach maximum power point and their efficiency. It is found that maximum power point is tracked in PV systems with greater efficiency using PSO as compared to ANN.","PeriodicalId":174411,"journal":{"name":"2020 International Conference for Emerging Technology (INCET)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Maximum Power Tracking using Artificial Intelligence based optimization controller in Photovoltaic Systems\",\"authors\":\"Ayush Verma, S. Yadav, Ankita Arora, Kartikey Singh\",\"doi\":\"10.1109/incet49848.2020.9154109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes performance of Artificial Intelligence based optimization controller for the comparative study of maximum power point tracking (MPPT) in PV Systems. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) control methods are the two such techniques used, and are simulated in MATLAB-Simulink using Trina Solar TSM-250PD05.08. The simulation results suitably depict the performance of these methods on the basis of some parameters like their rise time, settling time, time taken to reach maximum power point and their efficiency. It is found that maximum power point is tracked in PV systems with greater efficiency using PSO as compared to ANN.\",\"PeriodicalId\":174411,\"journal\":{\"name\":\"2020 International Conference for Emerging Technology (INCET)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/incet49848.2020.9154109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/incet49848.2020.9154109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对光伏系统最大功率点跟踪的比较研究,分析了基于人工智能的优化控制器的性能。人工神经网络(ANN)和粒子群优化(PSO)控制方法就是其中的两种控制方法,并在MATLAB-Simulink中使用天合光能TSM-250PD05.08进行了仿真。仿真结果从上升时间、沉降时间、达到最大功率点所需时间和效率等参数比较了这些方法的性能。研究发现,与人工神经网络相比,采用粒子群算法跟踪光伏系统的最大功率点具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Maximum Power Tracking using Artificial Intelligence based optimization controller in Photovoltaic Systems
This paper analyzes performance of Artificial Intelligence based optimization controller for the comparative study of maximum power point tracking (MPPT) in PV Systems. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) control methods are the two such techniques used, and are simulated in MATLAB-Simulink using Trina Solar TSM-250PD05.08. The simulation results suitably depict the performance of these methods on the basis of some parameters like their rise time, settling time, time taken to reach maximum power point and their efficiency. It is found that maximum power point is tracked in PV systems with greater efficiency using PSO as compared to ANN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of DC Parameters of Double Gate Tunnel Field Effect Transistor (DG- TFET) for different Gate Dielectrics An Open-source Framework for Robust Portable Cellular Network Efficiency Comparison of Supervised and Unsupervised Classifier on Content Based Classification using Shape, Color, Texture Improved Divorce Prediction Using Machine learning- Particle Swarm Optimization (PSO) Machine Learning Based Synchrophasor Data Analysis for Islanding Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1