图像分析的鲁棒调整似然函数

Rong Duan, Wei Jiang, H. Man
{"title":"图像分析的鲁棒调整似然函数","authors":"Rong Duan, Wei Jiang, H. Man","doi":"10.1109/AIPR.2006.34","DOIUrl":null,"url":null,"abstract":"Model misspecification has been a major concern in practical model based image analysis. The underlying assumptions of generative processes usually can not exactly describe real-world data samples, which renders the maximum likelihood estimation (MLE) and the Bayesian decision methods unreliable. In this work we study a robust adjusted likelihood (RAL) function that can improve image classification performance under misspecified models. The RAL is calculated by raising the conventional likelihood function to a positive power and multiplying it with a scaling factor. Similar to model parameter estimation, these two new RAL parameters, i.e. the power and the scaling factor, are estimated from the training data using minimum error rate method. In two-category classification case, this RAL is equivalent to a linear discriminant function in log-likelihood space. To demonstrate the effectiveness of this RAL, we first simulate a model misspecification scenario, in which two Rayleigh sources are misspecified as Gaussian distributions. The Gaussian parameters and the RAL parameters are estimated accordingly from the training data, and the two RAL parameters are studied separately. The simulation results show that the Bayes decisions based on maximum-RAL yield higher classification accuracy than the decisions based on conventional maximum-likelihood. We further apply the RAL in automatic target recognition (ATR) of SAR images. Two target classes, i.e. t72 and bmp2, from MSTAR SAR target dataset are used in this study. The target signatures are modeled using Gaussian mixture models (GMMs) with five mixtures for each class. Image classification results again demonstrate a clear advantage of the proposed approach.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Adjusted Likelihood Function for Image Analysis\",\"authors\":\"Rong Duan, Wei Jiang, H. Man\",\"doi\":\"10.1109/AIPR.2006.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model misspecification has been a major concern in practical model based image analysis. The underlying assumptions of generative processes usually can not exactly describe real-world data samples, which renders the maximum likelihood estimation (MLE) and the Bayesian decision methods unreliable. In this work we study a robust adjusted likelihood (RAL) function that can improve image classification performance under misspecified models. The RAL is calculated by raising the conventional likelihood function to a positive power and multiplying it with a scaling factor. Similar to model parameter estimation, these two new RAL parameters, i.e. the power and the scaling factor, are estimated from the training data using minimum error rate method. In two-category classification case, this RAL is equivalent to a linear discriminant function in log-likelihood space. To demonstrate the effectiveness of this RAL, we first simulate a model misspecification scenario, in which two Rayleigh sources are misspecified as Gaussian distributions. The Gaussian parameters and the RAL parameters are estimated accordingly from the training data, and the two RAL parameters are studied separately. The simulation results show that the Bayes decisions based on maximum-RAL yield higher classification accuracy than the decisions based on conventional maximum-likelihood. We further apply the RAL in automatic target recognition (ATR) of SAR images. Two target classes, i.e. t72 and bmp2, from MSTAR SAR target dataset are used in this study. The target signatures are modeled using Gaussian mixture models (GMMs) with five mixtures for each class. Image classification results again demonstrate a clear advantage of the proposed approach.\",\"PeriodicalId\":375571,\"journal\":{\"name\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2006.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在实际的基于模型的图像分析中,模型错配一直是一个主要的问题。生成过程的基本假设通常不能准确地描述真实的数据样本,这使得极大似然估计和贝叶斯决策方法不可靠。在这项工作中,我们研究了一个鲁棒调整似然(RAL)函数,可以提高在错误指定模型下的图像分类性能。通过将常规似然函数提高到正幂并将其与比例因子相乘来计算RAL。与模型参数估计类似,这两个新的RAL参数,即功率和比例因子,使用最小错误率方法从训练数据中估计。在两类分类的情况下,这个RAL等价于对数似然空间中的一个线性判别函数。为了证明该RAL的有效性,我们首先模拟了一个模型错误指定的场景,其中两个瑞利源被错误指定为高斯分布。根据训练数据估计高斯参数和RAL参数,并分别对两个RAL参数进行研究。仿真结果表明,基于极大似然的贝叶斯决策比基于常规极大似然的贝叶斯决策具有更高的分类精度。我们进一步将该算法应用于SAR图像的自动目标识别(ATR)。本研究使用了MSTAR SAR目标数据集中的t72和bmp2两个目标类。目标特征使用高斯混合模型(GMMs)建模,每个类别有五个混合。图像分类结果再次证明了该方法的明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Adjusted Likelihood Function for Image Analysis
Model misspecification has been a major concern in practical model based image analysis. The underlying assumptions of generative processes usually can not exactly describe real-world data samples, which renders the maximum likelihood estimation (MLE) and the Bayesian decision methods unreliable. In this work we study a robust adjusted likelihood (RAL) function that can improve image classification performance under misspecified models. The RAL is calculated by raising the conventional likelihood function to a positive power and multiplying it with a scaling factor. Similar to model parameter estimation, these two new RAL parameters, i.e. the power and the scaling factor, are estimated from the training data using minimum error rate method. In two-category classification case, this RAL is equivalent to a linear discriminant function in log-likelihood space. To demonstrate the effectiveness of this RAL, we first simulate a model misspecification scenario, in which two Rayleigh sources are misspecified as Gaussian distributions. The Gaussian parameters and the RAL parameters are estimated accordingly from the training data, and the two RAL parameters are studied separately. The simulation results show that the Bayes decisions based on maximum-RAL yield higher classification accuracy than the decisions based on conventional maximum-likelihood. We further apply the RAL in automatic target recognition (ATR) of SAR images. Two target classes, i.e. t72 and bmp2, from MSTAR SAR target dataset are used in this study. The target signatures are modeled using Gaussian mixture models (GMMs) with five mixtures for each class. Image classification results again demonstrate a clear advantage of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Algorithms for Tracking Multiple Objects in Video Rapid Automated Polygonal Image Decomposition Application Development Framework for the Rapid Integration of High Performance Image Processing Algorithms Automatic Alignment of Color Imagery onto 3D Laser Radar Data A Rate Distortion Method for Beamforming in RF Image Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1