用于安全关键系统强隔离的低延迟灵活TDM NoC

M. Alonso, J. Flich, M. Turki, D. Bertozzi
{"title":"用于安全关键系统强隔离的低延迟灵活TDM NoC","authors":"M. Alonso, J. Flich, M. Turki, D. Bertozzi","doi":"10.1109/MCSoC.2019.00029","DOIUrl":null,"url":null,"abstract":"Shared security-critical systems are typically organized as a set of domains that must be kept separate. The network-on-chip (NoC) is key to delivering strong domain isolation, since many of its internal resources are shared between packets from different domains; therefore time-division multiplexing (TDM) is often implemented to avoid any form of interference. Prior approaches to TDM-based scheduling of NoCs lose relevance when they are challenged with conflicting requirements of latency optimization, area efficiency, architectural flexibility and fast reconfigurability. In many cases, aggressive latency optimizations are performed at the cost of timing channel protection. In this paper, we propose a new scheduling approach of time slots in 2D-mesh TDM NoCs that follows directly from the properties of the Channel Dependency Graph. As a result, the isolation-performance trade-off is consistently improved with respect to state-of-the-art solutions across the domain configuration space. When combined with a new token-based mechanism to dispatch scheduling directives, our approach enables the effective reconfiguration of the number of domains, unlike the static nature of most previous proposals.","PeriodicalId":104240,"journal":{"name":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Low-Latency and Flexible TDM NoC for Strong Isolation in Security-Critical Systems\",\"authors\":\"M. Alonso, J. Flich, M. Turki, D. Bertozzi\",\"doi\":\"10.1109/MCSoC.2019.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shared security-critical systems are typically organized as a set of domains that must be kept separate. The network-on-chip (NoC) is key to delivering strong domain isolation, since many of its internal resources are shared between packets from different domains; therefore time-division multiplexing (TDM) is often implemented to avoid any form of interference. Prior approaches to TDM-based scheduling of NoCs lose relevance when they are challenged with conflicting requirements of latency optimization, area efficiency, architectural flexibility and fast reconfigurability. In many cases, aggressive latency optimizations are performed at the cost of timing channel protection. In this paper, we propose a new scheduling approach of time slots in 2D-mesh TDM NoCs that follows directly from the properties of the Channel Dependency Graph. As a result, the isolation-performance trade-off is consistently improved with respect to state-of-the-art solutions across the domain configuration space. When combined with a new token-based mechanism to dispatch scheduling directives, our approach enables the effective reconfiguration of the number of domains, unlike the static nature of most previous proposals.\",\"PeriodicalId\":104240,\"journal\":{\"name\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC.2019.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC.2019.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

共享的安全关键型系统通常组织为一组必须保持独立的域。片上网络(NoC)是提供强域隔离的关键,因为它的许多内部资源在来自不同域的数据包之间共享;因此,通常采用时分复用(TDM)来避免任何形式的干扰。当时延优化、区域效率、架构灵活性和快速可重构性等要求相互冲突时,现有的基于tdm的noc调度方法失去了相关性。在许多情况下,积极的延迟优化是以牺牲时间通道保护为代价的。在本文中,我们提出了一种新的二维网格TDM noc的时隙调度方法,该方法直接遵循通道依赖图的属性。因此,相对于跨域配置空间的最先进的解决方案,隔离与性能之间的权衡得到了持续改进。当结合新的基于令牌的机制来调度调度指令时,我们的方法可以有效地重新配置域的数量,而不像大多数以前的建议的静态性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low-Latency and Flexible TDM NoC for Strong Isolation in Security-Critical Systems
Shared security-critical systems are typically organized as a set of domains that must be kept separate. The network-on-chip (NoC) is key to delivering strong domain isolation, since many of its internal resources are shared between packets from different domains; therefore time-division multiplexing (TDM) is often implemented to avoid any form of interference. Prior approaches to TDM-based scheduling of NoCs lose relevance when they are challenged with conflicting requirements of latency optimization, area efficiency, architectural flexibility and fast reconfigurability. In many cases, aggressive latency optimizations are performed at the cost of timing channel protection. In this paper, we propose a new scheduling approach of time slots in 2D-mesh TDM NoCs that follows directly from the properties of the Channel Dependency Graph. As a result, the isolation-performance trade-off is consistently improved with respect to state-of-the-art solutions across the domain configuration space. When combined with a new token-based mechanism to dispatch scheduling directives, our approach enables the effective reconfiguration of the number of domains, unlike the static nature of most previous proposals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm to Determine Extended Edit Distance between Program Codes Smart Ontology-Based Event Identification Automatic Generation of Fill-in-the-Blank Programming Problems Prototype of FPGA Dynamic Reconfiguration Based-on Context-Oriented Programming An Efficient Implementation of a TAGE Branch Predictor for Soft Processors on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1