{"title":"利用jiles atherton滞回模型分析三相SISFCL随电路参数变化的性能","authors":"A. Upadhyaya, D. Sarkar, A. B. Choudhury, D. Roy","doi":"10.1109/CIEC.2016.7513667","DOIUrl":null,"url":null,"abstract":"In modern electrical power systems, Saturated Iron-Core Superconducting Fault Current Limiters (SISFCL) are becoming ever popular on account of their ability to instantaneously and reliably detect and limit the high magnitude fault current caused by short circuit faults. The SISFCL accomplishes this by altering the magnetic state of its ferromagnetic core material between saturation and unsaturation, thereby producing low impedance during normal operation and high impedance during faulted condition. In this paper, the mathematical model of a three-phase SISFCL is simulated using numerical methods in the MATLAB software environment. The effect of magnetic hysteresis of the core material is incorporated in the simulation via the Jiles-Atherton hysteresis model. The performance of the SISFCL is analysed against variations of the different circuit parameters namely, the fault resistance, DC bias current, number of turns of the AC and DC coil winding.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance analysis of a three-phase SISFCL with the variation of circuit parameters using jiles atherton hysteresis model\",\"authors\":\"A. Upadhyaya, D. Sarkar, A. B. Choudhury, D. Roy\",\"doi\":\"10.1109/CIEC.2016.7513667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern electrical power systems, Saturated Iron-Core Superconducting Fault Current Limiters (SISFCL) are becoming ever popular on account of their ability to instantaneously and reliably detect and limit the high magnitude fault current caused by short circuit faults. The SISFCL accomplishes this by altering the magnetic state of its ferromagnetic core material between saturation and unsaturation, thereby producing low impedance during normal operation and high impedance during faulted condition. In this paper, the mathematical model of a three-phase SISFCL is simulated using numerical methods in the MATLAB software environment. The effect of magnetic hysteresis of the core material is incorporated in the simulation via the Jiles-Atherton hysteresis model. The performance of the SISFCL is analysed against variations of the different circuit parameters namely, the fault resistance, DC bias current, number of turns of the AC and DC coil winding.\",\"PeriodicalId\":443343,\"journal\":{\"name\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEC.2016.7513667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis of a three-phase SISFCL with the variation of circuit parameters using jiles atherton hysteresis model
In modern electrical power systems, Saturated Iron-Core Superconducting Fault Current Limiters (SISFCL) are becoming ever popular on account of their ability to instantaneously and reliably detect and limit the high magnitude fault current caused by short circuit faults. The SISFCL accomplishes this by altering the magnetic state of its ferromagnetic core material between saturation and unsaturation, thereby producing low impedance during normal operation and high impedance during faulted condition. In this paper, the mathematical model of a three-phase SISFCL is simulated using numerical methods in the MATLAB software environment. The effect of magnetic hysteresis of the core material is incorporated in the simulation via the Jiles-Atherton hysteresis model. The performance of the SISFCL is analysed against variations of the different circuit parameters namely, the fault resistance, DC bias current, number of turns of the AC and DC coil winding.