基于EEG脑图的情绪识别多任务CNN模型

Evgenii Rudakov, Loufrani Laurent, Valentin Cousin, Ahmed Roshdi, R. Fournier, A. Nait-Ali, T. Beyrouthy, S. A. Kork
{"title":"基于EEG脑图的情绪识别多任务CNN模型","authors":"Evgenii Rudakov, Loufrani Laurent, Valentin Cousin, Ahmed Roshdi, R. Fournier, A. Nait-Ali, T. Beyrouthy, S. A. Kork","doi":"10.1109/BioSMART54244.2021.9677807","DOIUrl":null,"url":null,"abstract":"Emotion identification plays a vital role in human interactions. For this purpose, Computer-vision methods for automatic emotion recognition is nowadays a widely studied topic. One of the most studied approaches for automatic emotion recognition is processing multi-channel Electroencephalogram signals (EEG). This paper presents a new model for emotion recognition using brain maps as input and providing emotion states in terms of arousal and valence as output. Brain maps are a spatial representation of features extracted from EEG signals. The proposed model, called Multi-Task Convolutional Neural Network (MT-CNN), is fed with stacked brain maps of four different waves of different frequency bands: alpha, beta, gamma and theta, using differential entropy and power spectra density and considering observation windows of 0.5s. This model is trained and tested on the DEAP dataset, a well-known dataset for comparison purposes. This work shows that the MT-CNN nerforms better than other methods.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Task CNN model for emotion recognition from EEG Brain maps\",\"authors\":\"Evgenii Rudakov, Loufrani Laurent, Valentin Cousin, Ahmed Roshdi, R. Fournier, A. Nait-Ali, T. Beyrouthy, S. A. Kork\",\"doi\":\"10.1109/BioSMART54244.2021.9677807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion identification plays a vital role in human interactions. For this purpose, Computer-vision methods for automatic emotion recognition is nowadays a widely studied topic. One of the most studied approaches for automatic emotion recognition is processing multi-channel Electroencephalogram signals (EEG). This paper presents a new model for emotion recognition using brain maps as input and providing emotion states in terms of arousal and valence as output. Brain maps are a spatial representation of features extracted from EEG signals. The proposed model, called Multi-Task Convolutional Neural Network (MT-CNN), is fed with stacked brain maps of four different waves of different frequency bands: alpha, beta, gamma and theta, using differential entropy and power spectra density and considering observation windows of 0.5s. This model is trained and tested on the DEAP dataset, a well-known dataset for comparison purposes. This work shows that the MT-CNN nerforms better than other methods.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

情感识别在人际交往中起着至关重要的作用。为此,基于计算机视觉的自动情绪识别方法是目前一个被广泛研究的课题。多通道脑电图信号处理是目前研究最多的情绪自动识别方法之一。本文提出了一种以脑图为输入,以唤醒和效价为输出的情绪状态识别模型。脑图是从脑电图信号中提取的特征的空间表示。该模型被称为多任务卷积神经网络(MT-CNN),利用微分熵和功率谱密度,并考虑0.5s的观察窗口,将alpha、beta、gamma和theta四种不同频段的不同波的堆叠脑图馈送给该模型。该模型在DEAP数据集上进行了训练和测试,这是一个众所周知的用于比较的数据集。这项工作表明,MT-CNN的神经网络比其他方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Task CNN model for emotion recognition from EEG Brain maps
Emotion identification plays a vital role in human interactions. For this purpose, Computer-vision methods for automatic emotion recognition is nowadays a widely studied topic. One of the most studied approaches for automatic emotion recognition is processing multi-channel Electroencephalogram signals (EEG). This paper presents a new model for emotion recognition using brain maps as input and providing emotion states in terms of arousal and valence as output. Brain maps are a spatial representation of features extracted from EEG signals. The proposed model, called Multi-Task Convolutional Neural Network (MT-CNN), is fed with stacked brain maps of four different waves of different frequency bands: alpha, beta, gamma and theta, using differential entropy and power spectra density and considering observation windows of 0.5s. This model is trained and tested on the DEAP dataset, a well-known dataset for comparison purposes. This work shows that the MT-CNN nerforms better than other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1