建立一个通过长短期记忆探索消费者购买行为的模型

Yueh-Shiu Lee, I-Yun Chen, Tsung-Yao Lin, Yen-Chiao Chuang, Hsu-Jung Liu
{"title":"建立一个通过长短期记忆探索消费者购买行为的模型","authors":"Yueh-Shiu Lee, I-Yun Chen, Tsung-Yao Lin, Yen-Chiao Chuang, Hsu-Jung Liu","doi":"10.1145/3440943.3444748","DOIUrl":null,"url":null,"abstract":"1This article aspires to develop a model to explore consumer buying behaviors through Long Short-Term Memory (LSTM); from building a marketing system and integrating online and offline information, marketers can employ diverse approaches to execute their marketing strategies and attract more customers for improving the overall sales.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Model to Explore Consumer Buying Behaviors through Long Short-Term Memory\",\"authors\":\"Yueh-Shiu Lee, I-Yun Chen, Tsung-Yao Lin, Yen-Chiao Chuang, Hsu-Jung Liu\",\"doi\":\"10.1145/3440943.3444748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1This article aspires to develop a model to explore consumer buying behaviors through Long Short-Term Memory (LSTM); from building a marketing system and integrating online and offline information, marketers can employ diverse approaches to execute their marketing strategies and attract more customers for improving the overall sales.\",\"PeriodicalId\":310247,\"journal\":{\"name\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440943.3444748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文试图建立一个通过长短期记忆(LSTM)来探索消费者购买行为的模型;营销人员可以通过建立营销体系,整合线上线下信息,采用多种方式来执行营销策略,吸引更多的客户,从而提高整体销售额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a Model to Explore Consumer Buying Behaviors through Long Short-Term Memory
1This article aspires to develop a model to explore consumer buying behaviors through Long Short-Term Memory (LSTM); from building a marketing system and integrating online and offline information, marketers can employ diverse approaches to execute their marketing strategies and attract more customers for improving the overall sales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1