利用数据转换图开发生物信息学数据分析应用的并行性

Zhenchun Huang, Yang Gu, XiaoXuan Bai
{"title":"利用数据转换图开发生物信息学数据分析应用的并行性","authors":"Zhenchun Huang, Yang Gu, XiaoXuan Bai","doi":"10.1109/BMEI.2015.7401595","DOIUrl":null,"url":null,"abstract":"Bioinformatics applications which are both data-intensive and computation-intensive bring great challenges to their development and optimization. In order to study and accelerate bioinformatics data analysis models, a method named data transformation graph (DTG) is introduced first. It describes scientific data analysis models by dependencies and transformations among their data items. Then, taking BLAST as an example, DTG is used to study the data dependency in this popular bioinformatics data analysis model and parallel it by both query splitting and database partition. At last, parallel versions of BLAST proposed by DTG are implemented based on a distributed data-intensive computing middleware called Robinia. The result of performance test shows that parallel BLAST can achieve near-linear speedup with good scalability, and data transformation graph can be used to study, parallelize and optimize bioinformatics analysis applications for higher performance.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting parallelism for bioinformatics data analysis applications by data transformation graph\",\"authors\":\"Zhenchun Huang, Yang Gu, XiaoXuan Bai\",\"doi\":\"10.1109/BMEI.2015.7401595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioinformatics applications which are both data-intensive and computation-intensive bring great challenges to their development and optimization. In order to study and accelerate bioinformatics data analysis models, a method named data transformation graph (DTG) is introduced first. It describes scientific data analysis models by dependencies and transformations among their data items. Then, taking BLAST as an example, DTG is used to study the data dependency in this popular bioinformatics data analysis model and parallel it by both query splitting and database partition. At last, parallel versions of BLAST proposed by DTG are implemented based on a distributed data-intensive computing middleware called Robinia. The result of performance test shows that parallel BLAST can achieve near-linear speedup with good scalability, and data transformation graph can be used to study, parallelize and optimize bioinformatics analysis applications for higher performance.\",\"PeriodicalId\":119361,\"journal\":{\"name\":\"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2015.7401595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物信息学应用是数据密集型和计算密集型的应用,对其开发和优化提出了巨大的挑战。为了研究和加速生物信息学数据分析模型,首先引入了数据转换图(DTG)方法。它通过数据项之间的依赖关系和转换来描述科学数据分析模型。然后,以BLAST为例,利用DTG对这一流行的生物信息学数据分析模型中的数据依赖关系进行研究,并采用查询拆分和数据库分区两种方法对其进行并行处理。最后,基于分布式数据密集型计算中间件Robinia实现了DTG提出的BLAST并行版本。性能测试结果表明,并行BLAST可以实现近线性加速,具有良好的可扩展性,数据转换图可以用于研究、并行化和优化生物信息学分析应用,从而获得更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting parallelism for bioinformatics data analysis applications by data transformation graph
Bioinformatics applications which are both data-intensive and computation-intensive bring great challenges to their development and optimization. In order to study and accelerate bioinformatics data analysis models, a method named data transformation graph (DTG) is introduced first. It describes scientific data analysis models by dependencies and transformations among their data items. Then, taking BLAST as an example, DTG is used to study the data dependency in this popular bioinformatics data analysis model and parallel it by both query splitting and database partition. At last, parallel versions of BLAST proposed by DTG are implemented based on a distributed data-intensive computing middleware called Robinia. The result of performance test shows that parallel BLAST can achieve near-linear speedup with good scalability, and data transformation graph can be used to study, parallelize and optimize bioinformatics analysis applications for higher performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECG signal compressed sensing using the wavelet tree model Development of a quantifiable optical reader for lateral flow immunoassay A tightly secure multi-party-signature protocol in the plain model Breast mass detection with kernelized supervised hashing 3D reconstruction of human enamel Ex vivo using high frequency ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1