基于非线性迭代预测方案的情感脑机交互多模态感知节能资源分配

Yuxuan Zhou Yuxuan Zhou, Wanzhong Chen Yuxuan Zhou, Linlin Li Wanzhong Chen, Linlin Gong Linlin Li, Chang Liu Linlin Gong
{"title":"基于非线性迭代预测方案的情感脑机交互多模态感知节能资源分配","authors":"Yuxuan Zhou Yuxuan Zhou, Wanzhong Chen Yuxuan Zhou, Linlin Li Wanzhong Chen, Linlin Gong Linlin Li, Chang Liu Linlin Gong","doi":"10.53106/160792642023052403009","DOIUrl":null,"url":null,"abstract":"\n For the whole environmental settings in this research, the conventional affective brain-computer interactions can not build a good performance on energy-efficient resource of network’s forwarding ports and routing paths due to its poor allocation function of cognitive radio networks, based on the novel interactive networking architecture, the model of non-linear iterative prediction scheme in interaction was successively proposed. This research proposes a modified LSTM algorithm with a structure of non-linear iterative in complexity prediction, joins the multiple k modes selection and multi-agent systems, maximizes EERA of forwarding and routing while maintaining the communication quality. Firstly, considering whether this affective brain-computer interactions need the networking communication in system. Secondly, adjusting the forwarding and routing factors of energy-efficient resource allocation by selecting the best optimal energy-efficient resource for the links through the non-linear iterative prediction in a multi-modal perception. The simulation results show that compared with the other models and algorithms, the proposed scheme for affective brain-computer interactions, which has a nice performance on a higher EERA and channel utilization of a networking architecture of brain-computer interactions.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Energy-Efficient Resource Allocation of Multi-Modal Perception for Affective Brain-Computer Interactions Based on Non-Linear Iterative Prediction Scheme\",\"authors\":\"Yuxuan Zhou Yuxuan Zhou, Wanzhong Chen Yuxuan Zhou, Linlin Li Wanzhong Chen, Linlin Gong Linlin Li, Chang Liu Linlin Gong\",\"doi\":\"10.53106/160792642023052403009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For the whole environmental settings in this research, the conventional affective brain-computer interactions can not build a good performance on energy-efficient resource of network’s forwarding ports and routing paths due to its poor allocation function of cognitive radio networks, based on the novel interactive networking architecture, the model of non-linear iterative prediction scheme in interaction was successively proposed. This research proposes a modified LSTM algorithm with a structure of non-linear iterative in complexity prediction, joins the multiple k modes selection and multi-agent systems, maximizes EERA of forwarding and routing while maintaining the communication quality. Firstly, considering whether this affective brain-computer interactions need the networking communication in system. Secondly, adjusting the forwarding and routing factors of energy-efficient resource allocation by selecting the best optimal energy-efficient resource for the links through the non-linear iterative prediction in a multi-modal perception. The simulation results show that compared with the other models and algorithms, the proposed scheme for affective brain-computer interactions, which has a nice performance on a higher EERA and channel utilization of a networking architecture of brain-computer interactions.\\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023052403009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023052403009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对本研究的整个环境设置,传统的情感脑机交互由于认知无线网络的分配功能较差,不能很好地利用网络转发端口和路由路径的节能资源,在新的交互网络架构的基础上,提出了交互中的非线性迭代预测方案模型。本研究提出了一种改进的LSTM算法,该算法在复杂度预测中采用非线性迭代的结构,将多k模式选择和多智能体系统连接起来,在保持通信质量的同时最大化转发和路由的EERA。首先,考虑这种情感的脑机交互是否需要系统中的网络通信。其次,通过多模态感知的非线性迭代预测,为链路选择最优的节能资源,调整节能资源分配的转发和路由因素;仿真结果表明,与其他模型和算法相比,本文提出的情感脑机交互方案在脑机交互网络体系结构中具有较高的EERA和信道利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Energy-Efficient Resource Allocation of Multi-Modal Perception for Affective Brain-Computer Interactions Based on Non-Linear Iterative Prediction Scheme
For the whole environmental settings in this research, the conventional affective brain-computer interactions can not build a good performance on energy-efficient resource of network’s forwarding ports and routing paths due to its poor allocation function of cognitive radio networks, based on the novel interactive networking architecture, the model of non-linear iterative prediction scheme in interaction was successively proposed. This research proposes a modified LSTM algorithm with a structure of non-linear iterative in complexity prediction, joins the multiple k modes selection and multi-agent systems, maximizes EERA of forwarding and routing while maintaining the communication quality. Firstly, considering whether this affective brain-computer interactions need the networking communication in system. Secondly, adjusting the forwarding and routing factors of energy-efficient resource allocation by selecting the best optimal energy-efficient resource for the links through the non-linear iterative prediction in a multi-modal perception. The simulation results show that compared with the other models and algorithms, the proposed scheme for affective brain-computer interactions, which has a nice performance on a higher EERA and channel utilization of a networking architecture of brain-computer interactions.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1