使用稀疏编码自动图像裁剪

Jieying She, Duo-Chao Wang, Mingli Song
{"title":"使用稀疏编码自动图像裁剪","authors":"Jieying She, Duo-Chao Wang, Mingli Song","doi":"10.1109/ACPR.2011.6166623","DOIUrl":null,"url":null,"abstract":"Image cropping is a technique to help people improve their taken photos' quality by discarding unnecessary parts of a photo. In this paper, we propose a new approach to crop the photo for better composition through learning the structure. Firstly, we classify photos into different categories. Then we extract the graph-based visual saliency map of these photos, based on which we build a dictionary for each categories. Finally, by solving the sparse coding problem of each input photo based on the dictionary, we find a cropped region that can be best decoded by this dictionary. The experimental results demonstrate that our technique is applicable to a wide range of photos and produce more agreeable resulting photos.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Automatic image cropping using sparse coding\",\"authors\":\"Jieying She, Duo-Chao Wang, Mingli Song\",\"doi\":\"10.1109/ACPR.2011.6166623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image cropping is a technique to help people improve their taken photos' quality by discarding unnecessary parts of a photo. In this paper, we propose a new approach to crop the photo for better composition through learning the structure. Firstly, we classify photos into different categories. Then we extract the graph-based visual saliency map of these photos, based on which we build a dictionary for each categories. Finally, by solving the sparse coding problem of each input photo based on the dictionary, we find a cropped region that can be best decoded by this dictionary. The experimental results demonstrate that our technique is applicable to a wide range of photos and produce more agreeable resulting photos.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

图像裁剪是一种通过去除照片中不必要的部分来帮助人们提高照片质量的技术。在本文中,我们提出了一种新的方法,通过学习结构来裁剪照片以获得更好的构图。首先,我们把照片分成不同的类别。然后,我们提取这些照片的基于图形的视觉显著性图,并在此基础上为每个类别构建字典。最后,通过基于字典对每张输入照片进行稀疏编码,找到一个裁剪后的区域,该区域可以被该字典进行最佳解码。实验结果表明,我们的技术适用于更广泛的照片,并产生更令人满意的结果照片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic image cropping using sparse coding
Image cropping is a technique to help people improve their taken photos' quality by discarding unnecessary parts of a photo. In this paper, we propose a new approach to crop the photo for better composition through learning the structure. Firstly, we classify photos into different categories. Then we extract the graph-based visual saliency map of these photos, based on which we build a dictionary for each categories. Finally, by solving the sparse coding problem of each input photo based on the dictionary, we find a cropped region that can be best decoded by this dictionary. The experimental results demonstrate that our technique is applicable to a wide range of photos and produce more agreeable resulting photos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1