住宅微电网源蓄负荷协同调度的多目标遗传算法

Subho Paul, N. Padhy
{"title":"住宅微电网源蓄负荷协同调度的多目标遗传算法","authors":"Subho Paul, N. Padhy","doi":"10.1109/ISAP48318.2019.9065963","DOIUrl":null,"url":null,"abstract":"The current work presented in this article proposes a day ahead multi-objective optimization portfolio for a residential microgrid or a home consisting of different domestic appliances and rooftop solar panels associated with storage device. The proposed framework aims to determine synergetic source-storage-load dispatch schedule by simultaneously minimizing the electricity cost, ocular discomfort and thermal discomfort experienced by the home occupants for the following day while controlling switching of the discrete loads (like washing machine, dryer etc.) and consumption of the continuous loads (like air-conditioner, lights etc.). The entire optimization framework takes the form of a mixed integer non-linear programming and the solution technique is proposed using Genetic Algorithm. The simulation is carried out on practical data set of a residential unit to prove effectiveness of the designed method.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multi-Objective Genetic Algorithm Approach for Synergetic Source-Storage-Load Dispatch in a Residential Microgrid\",\"authors\":\"Subho Paul, N. Padhy\",\"doi\":\"10.1109/ISAP48318.2019.9065963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work presented in this article proposes a day ahead multi-objective optimization portfolio for a residential microgrid or a home consisting of different domestic appliances and rooftop solar panels associated with storage device. The proposed framework aims to determine synergetic source-storage-load dispatch schedule by simultaneously minimizing the electricity cost, ocular discomfort and thermal discomfort experienced by the home occupants for the following day while controlling switching of the discrete loads (like washing machine, dryer etc.) and consumption of the continuous loads (like air-conditioner, lights etc.). The entire optimization framework takes the form of a mixed integer non-linear programming and the solution technique is proposed using Genetic Algorithm. The simulation is carried out on practical data set of a residential unit to prove effectiveness of the designed method.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文中介绍的当前工作为住宅微电网或由不同家用电器和与存储设备相关的屋顶太阳能电池板组成的家庭提出了提前一天的多目标优化组合。所提出的框架旨在通过同时控制离散负载(如洗衣机、烘干机等)的开关和连续负载(如空调、灯等)的消耗,最大限度地减少家庭居住者在第二天所经历的电力成本、视觉不适和热不适,来确定协同的源-存储-负载调度计划。整个优化框架采用混合整数非线性规划的形式,并采用遗传算法求解。在一个住宅单元的实际数据集上进行了仿真,验证了所设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Objective Genetic Algorithm Approach for Synergetic Source-Storage-Load Dispatch in a Residential Microgrid
The current work presented in this article proposes a day ahead multi-objective optimization portfolio for a residential microgrid or a home consisting of different domestic appliances and rooftop solar panels associated with storage device. The proposed framework aims to determine synergetic source-storage-load dispatch schedule by simultaneously minimizing the electricity cost, ocular discomfort and thermal discomfort experienced by the home occupants for the following day while controlling switching of the discrete loads (like washing machine, dryer etc.) and consumption of the continuous loads (like air-conditioner, lights etc.). The entire optimization framework takes the form of a mixed integer non-linear programming and the solution technique is proposed using Genetic Algorithm. The simulation is carried out on practical data set of a residential unit to prove effectiveness of the designed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal allocation of multi-type distributed generators for minimization of power losses in distribution systems Forecasting Power Consumption of IT Devices in a Data Center A Framework for Cyber-Physical Model Creation and Evaluation Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning Boost Power Factor Correction Converter fed Domestic Induction Heating System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1