{"title":"插值表值函数的时间差分学习","authors":"S. Lucas","doi":"10.1109/CIG.2009.5286496","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel function approximation architecture especially well suited to temporal difference learning. The architecture is based on using sets of interpolated table look-up functions. These offer rapid and stable learning, and are efficient when the number of inputs is small. An empirical investigation is conducted to test their performance on a supervised learning task, and on themountain car problem, a standard reinforcement learning benchmark. In each case, the interpolated table functions offer competitive performance.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Temporal difference learning with interpolated table value functions\",\"authors\":\"S. Lucas\",\"doi\":\"10.1109/CIG.2009.5286496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel function approximation architecture especially well suited to temporal difference learning. The architecture is based on using sets of interpolated table look-up functions. These offer rapid and stable learning, and are efficient when the number of inputs is small. An empirical investigation is conducted to test their performance on a supervised learning task, and on themountain car problem, a standard reinforcement learning benchmark. In each case, the interpolated table functions offer competitive performance.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal difference learning with interpolated table value functions
This paper introduces a novel function approximation architecture especially well suited to temporal difference learning. The architecture is based on using sets of interpolated table look-up functions. These offer rapid and stable learning, and are efficient when the number of inputs is small. An empirical investigation is conducted to test their performance on a supervised learning task, and on themountain car problem, a standard reinforcement learning benchmark. In each case, the interpolated table functions offer competitive performance.