带有误差方差的乘法模型的投票投票估计

K. Dozie, M. U. Uwaezuoke
{"title":"带有误差方差的乘法模型的投票投票估计","authors":"K. Dozie, M. U. Uwaezuoke","doi":"10.9734/jerr/2023/v25i8962","DOIUrl":null,"url":null,"abstract":"This article presents the condition(s) under which the multiplicative model with the error variances best describes the pattern in an observed time series, while comparing it with those of the additive and mixed models.  The method of estimation is based on the periodic, seasonal and overall averages and variances of time series data arranged in a Buys-Ballot table. The method assumes that (1) the underlying distribution of the variable,  X i j ,   i =  1, 2,  ...,  m ,  j  = 1 , 2 ,  ..., s  , under study is normal. (2) the trending curve is linear  (3) the decomposition method is  either additive or multiplicative or mixed. For multiplicative model, the error variance is not known and needs to be estimated with time series data. For additive and mixed models, the error variances are known and assumed to be equal to 1. Result shows that, under the stated assumptions, the seasonal variances of the Buys-Ballot table, for multiplicative model, a function of column ( j ) through the seasonal component  S2j with error variance.","PeriodicalId":340494,"journal":{"name":"Journal of Engineering Research and Reports","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Proposed Buys-Ballot Estimates for Multiplicative Model with the Error Variances\",\"authors\":\"K. Dozie, M. U. Uwaezuoke\",\"doi\":\"10.9734/jerr/2023/v25i8962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the condition(s) under which the multiplicative model with the error variances best describes the pattern in an observed time series, while comparing it with those of the additive and mixed models.  The method of estimation is based on the periodic, seasonal and overall averages and variances of time series data arranged in a Buys-Ballot table. The method assumes that (1) the underlying distribution of the variable,  X i j ,   i =  1, 2,  ...,  m ,  j  = 1 , 2 ,  ..., s  , under study is normal. (2) the trending curve is linear  (3) the decomposition method is  either additive or multiplicative or mixed. For multiplicative model, the error variance is not known and needs to be estimated with time series data. For additive and mixed models, the error variances are known and assumed to be equal to 1. Result shows that, under the stated assumptions, the seasonal variances of the Buys-Ballot table, for multiplicative model, a function of column ( j ) through the seasonal component  S2j with error variance.\",\"PeriodicalId\":340494,\"journal\":{\"name\":\"Journal of Engineering Research and Reports\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research and Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/jerr/2023/v25i8962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jerr/2023/v25i8962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了带误差方差的乘法模型最能描述观测时间序列模式的条件,并将其与加性模型和混合模型进行了比较。估计方法是根据在投票表中排列的时间序列数据的周期性、季节性和总体平均值和方差。该方法假定(1)变量X i j, i = 1,2,…的底层分布, m, j = 1,2,…, s,在研究中是正常的。(2)趋势曲线为线性;(3)分解方法为加性、乘性或混合性。对于乘法模型,误差方差是未知的,需要用时间序列数据进行估计。对于加性模型和混合模型,误差方差是已知的,并假定为等于1。结果表明,在规定的假设下,对投票表的季节方差,对于乘法模型,列(j)的函数通过季节分量S2j与误差方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Proposed Buys-Ballot Estimates for Multiplicative Model with the Error Variances
This article presents the condition(s) under which the multiplicative model with the error variances best describes the pattern in an observed time series, while comparing it with those of the additive and mixed models.  The method of estimation is based on the periodic, seasonal and overall averages and variances of time series data arranged in a Buys-Ballot table. The method assumes that (1) the underlying distribution of the variable,  X i j ,   i =  1, 2,  ...,  m ,  j  = 1 , 2 ,  ..., s  , under study is normal. (2) the trending curve is linear  (3) the decomposition method is  either additive or multiplicative or mixed. For multiplicative model, the error variance is not known and needs to be estimated with time series data. For additive and mixed models, the error variances are known and assumed to be equal to 1. Result shows that, under the stated assumptions, the seasonal variances of the Buys-Ballot table, for multiplicative model, a function of column ( j ) through the seasonal component  S2j with error variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Machine Learning Model for Network Anomaly Detection: Support Vector Machine A Short Review of Yttria-Stabilized Zirconia (YSZ) for Thermal Barrier Coatings: Recent Progress The Affects of Ce Doping Cr\(_2\)O\(_3\) Based Catalysts Supported on Activated Carbon for 1,2-Dichloroethane Abatement Numerical Comparison of Cu and Al\(_2\) O\(_3\) Nanoparticles in an MHD Water-based Nanofluid Novel Illumination-invariant Face Recognition Approach via Reflectance-luminance and Local Matching Model with Weighted Voting System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1