利用嵌入式CPU和GPU的全高清图像实时人脸检测

Chanyoung Oh, Saehanseul Yi, Youngmin Yi
{"title":"利用嵌入式CPU和GPU的全高清图像实时人脸检测","authors":"Chanyoung Oh, Saehanseul Yi, Youngmin Yi","doi":"10.1109/ICME.2015.7177522","DOIUrl":null,"url":null,"abstract":"CPU-GPU heterogeneous systems have become a mainstream platform in both server and embedded domains with ever increasing demand for powerful accelerator. In this paper, we present parallelization techniques that exploit both data and task parallelism of LBP based face detection algorithm on an embedded heterogeneous platform. By running tasks in a pipelined parallel way on multicore CPUs and by offloading a data-parallel task to a GPU, we could successfully achieve 29 fps for Full HD inputs on Tegra K1 platform where quad-core Cortex-A15 CPU and CUDA supported 192-core GPU are integrated. This corresponds to 5.54x speedup over a sequential version and 1.69x speedup compared to the GPU-only implementations.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Real-time face detection in Full HD images exploiting both embedded CPU and GPU\",\"authors\":\"Chanyoung Oh, Saehanseul Yi, Youngmin Yi\",\"doi\":\"10.1109/ICME.2015.7177522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CPU-GPU heterogeneous systems have become a mainstream platform in both server and embedded domains with ever increasing demand for powerful accelerator. In this paper, we present parallelization techniques that exploit both data and task parallelism of LBP based face detection algorithm on an embedded heterogeneous platform. By running tasks in a pipelined parallel way on multicore CPUs and by offloading a data-parallel task to a GPU, we could successfully achieve 29 fps for Full HD inputs on Tegra K1 platform where quad-core Cortex-A15 CPU and CUDA supported 192-core GPU are integrated. This corresponds to 5.54x speedup over a sequential version and 1.69x speedup compared to the GPU-only implementations.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随着对高性能加速器的需求日益增长,CPU-GPU异构系统已成为服务器和嵌入式领域的主流平台。在本文中,我们提出了在嵌入式异构平台上利用基于LBP的人脸检测算法的数据和任务并行性的并行化技术。通过在多核CPU上以流水线并行方式运行任务,并将数据并行任务卸载到GPU上,我们可以在集成了四核Cortex-A15 CPU和CUDA支持的192核GPU的Tegra K1平台上成功实现29 fps的全高清输入。这相当于比顺序版本加速5.54倍,与仅使用gpu的实现相比加速1.69倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time face detection in Full HD images exploiting both embedded CPU and GPU
CPU-GPU heterogeneous systems have become a mainstream platform in both server and embedded domains with ever increasing demand for powerful accelerator. In this paper, we present parallelization techniques that exploit both data and task parallelism of LBP based face detection algorithm on an embedded heterogeneous platform. By running tasks in a pipelined parallel way on multicore CPUs and by offloading a data-parallel task to a GPU, we could successfully achieve 29 fps for Full HD inputs on Tegra K1 platform where quad-core Cortex-A15 CPU and CUDA supported 192-core GPU are integrated. This corresponds to 5.54x speedup over a sequential version and 1.69x speedup compared to the GPU-only implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1