具有对数素数投影的实用压缩感知

A. A. Moghadam, H. Radha
{"title":"具有对数素数投影的实用压缩感知","authors":"A. A. Moghadam, H. Radha","doi":"10.1109/CISS.2009.5054818","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for compressed sensing of integer-valued signals using prime numbers. In particular, we utilize the logarithmic values of prime numbers to construct projection matrices that are capable of significant reductions in the number of observations (m) needed for the recovery of integer-valued signals when compared to leading compressed-sensing methods. At one extreme, and under ideal conditions, the proposed Log of Prime-numbers (LoP) projection enables single-observation compressed sensing, where one sample (m = 1) can be used for the recovery of a sparse signal with N original integer samples. More importantly, we design a practical LoP projection system and a corresponding low-complexity solver that only requires m = k observations, where k is the sparsity of the signal S in some space ?. We compare the performance of the proposed LoP system with popular Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP) methods, and demonstrate the significant improvements that can be achieved by utilizing LoP projection matrices.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical compressed sensing with log-of-prime projections\",\"authors\":\"A. A. Moghadam, H. Radha\",\"doi\":\"10.1109/CISS.2009.5054818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for compressed sensing of integer-valued signals using prime numbers. In particular, we utilize the logarithmic values of prime numbers to construct projection matrices that are capable of significant reductions in the number of observations (m) needed for the recovery of integer-valued signals when compared to leading compressed-sensing methods. At one extreme, and under ideal conditions, the proposed Log of Prime-numbers (LoP) projection enables single-observation compressed sensing, where one sample (m = 1) can be used for the recovery of a sparse signal with N original integer samples. More importantly, we design a practical LoP projection system and a corresponding low-complexity solver that only requires m = k observations, where k is the sparsity of the signal S in some space ?. We compare the performance of the proposed LoP system with popular Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP) methods, and demonstrate the significant improvements that can be achieved by utilizing LoP projection matrices.\",\"PeriodicalId\":433796,\"journal\":{\"name\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2009.5054818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用素数对整数值信号进行压缩感知的新方法。特别是,我们利用素数的对数值来构建投影矩阵,与领先的压缩感知方法相比,该矩阵能够显著减少恢复整数值信号所需的观测数(m)。在一个极端和理想的条件下,所提出的Log of Prime-numbers (LoP)投影可以实现单观测压缩感知,其中一个样本(m = 1)可以用于恢复具有N个原始整数样本的稀疏信号。更重要的是,我们设计了一个实用的LoP投影系统和相应的低复杂度求解器,它只需要m = k个观测值,其中k为信号S在某个空间中的稀疏度。我们将所提出的LoP系统的性能与流行的基追踪(BP)和正交匹配追踪(OMP)方法进行了比较,并证明了使用LoP投影矩阵可以实现显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical compressed sensing with log-of-prime projections
In this paper, we propose a new approach for compressed sensing of integer-valued signals using prime numbers. In particular, we utilize the logarithmic values of prime numbers to construct projection matrices that are capable of significant reductions in the number of observations (m) needed for the recovery of integer-valued signals when compared to leading compressed-sensing methods. At one extreme, and under ideal conditions, the proposed Log of Prime-numbers (LoP) projection enables single-observation compressed sensing, where one sample (m = 1) can be used for the recovery of a sparse signal with N original integer samples. More importantly, we design a practical LoP projection system and a corresponding low-complexity solver that only requires m = k observations, where k is the sparsity of the signal S in some space ?. We compare the performance of the proposed LoP system with popular Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP) methods, and demonstrate the significant improvements that can be achieved by utilizing LoP projection matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1