{"title":"针对C安全错误攻击的系统安全评估方法","authors":"Dusko Karaklajic, Junfeng Fan, I. Verbauwhede","doi":"10.1109/HST.2011.5954997","DOIUrl":null,"url":null,"abstract":"This paper proposes a systematic security evaluation of cryptographic hardware against C safe-error attacks. Using the graph representation of a design, we provide a simple and efficient method to detect possible C safe-errors. Exposing possible vulnerabilities at an early stage of a design process, this method avoids costly design re-spins and reduces time-to-market. As a proof of concept, we apply the method to two well-known exponentiation algorithms: square-and-multiply-always and the Montgomery ladder.","PeriodicalId":300377,"journal":{"name":"2011 IEEE International Symposium on Hardware-Oriented Security and Trust","volume":"448 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Systematic security evaluation method against C safe-error attacks\",\"authors\":\"Dusko Karaklajic, Junfeng Fan, I. Verbauwhede\",\"doi\":\"10.1109/HST.2011.5954997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a systematic security evaluation of cryptographic hardware against C safe-error attacks. Using the graph representation of a design, we provide a simple and efficient method to detect possible C safe-errors. Exposing possible vulnerabilities at an early stage of a design process, this method avoids costly design re-spins and reduces time-to-market. As a proof of concept, we apply the method to two well-known exponentiation algorithms: square-and-multiply-always and the Montgomery ladder.\",\"PeriodicalId\":300377,\"journal\":{\"name\":\"2011 IEEE International Symposium on Hardware-Oriented Security and Trust\",\"volume\":\"448 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Hardware-Oriented Security and Trust\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2011.5954997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Hardware-Oriented Security and Trust","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2011.5954997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic security evaluation method against C safe-error attacks
This paper proposes a systematic security evaluation of cryptographic hardware against C safe-error attacks. Using the graph representation of a design, we provide a simple and efficient method to detect possible C safe-errors. Exposing possible vulnerabilities at an early stage of a design process, this method avoids costly design re-spins and reduces time-to-market. As a proof of concept, we apply the method to two well-known exponentiation algorithms: square-and-multiply-always and the Montgomery ladder.