一种估计多程序执行孤立性能的神经网络

Manel Lurbe, Josué Feliu, S. Petit, M. E. Gómez, J. Sahuquillo
{"title":"一种估计多程序执行孤立性能的神经网络","authors":"Manel Lurbe, Josué Feliu, S. Petit, M. E. Gómez, J. Sahuquillo","doi":"10.1109/pdp55904.2022.00018","DOIUrl":null,"url":null,"abstract":"When multiple applications are running on a platform with shared resources like multicore CPUs, the behaviour of the running application can be altered by the co-runners. In this case, the system resources need to be managed (e.g. by repartitioning the cache space, re-schedule applications in distinct cores, modifying the prefetcher configuration, etc.) to reduce the inter-application interference in order to minimize the performance losses over isolated execution. In this context, a main challenge in different computing scenarios like the public cloud or soft real-time systems is knowing the performance impact of a given management action on each application with respect to its isolated execution. With this aim, in this work we present a neural network-based approach that estimates the performance an application would have had in isolation from multi-program executions. Experimental results show that the proposal dynamically adapts to changes in application behavior. On average, the predicted performance presents an error deviation by 11.7% and 2.3% for MAPE and MSE respectively.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Network to Estimate Isolated Performance from Multi-Program Execution\",\"authors\":\"Manel Lurbe, Josué Feliu, S. Petit, M. E. Gómez, J. Sahuquillo\",\"doi\":\"10.1109/pdp55904.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When multiple applications are running on a platform with shared resources like multicore CPUs, the behaviour of the running application can be altered by the co-runners. In this case, the system resources need to be managed (e.g. by repartitioning the cache space, re-schedule applications in distinct cores, modifying the prefetcher configuration, etc.) to reduce the inter-application interference in order to minimize the performance losses over isolated execution. In this context, a main challenge in different computing scenarios like the public cloud or soft real-time systems is knowing the performance impact of a given management action on each application with respect to its isolated execution. With this aim, in this work we present a neural network-based approach that estimates the performance an application would have had in isolation from multi-program executions. Experimental results show that the proposal dynamically adapts to changes in application behavior. On average, the predicted performance presents an error deviation by 11.7% and 2.3% for MAPE and MSE respectively.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当多个应用程序在具有多核cpu等共享资源的平台上运行时,正在运行的应用程序的行为可以由共同运行者改变。在这种情况下,需要管理系统资源(例如,通过重新划分缓存空间,在不同的核心中重新调度应用程序,修改预取器配置等)来减少应用程序间的干扰,以最大限度地减少隔离执行带来的性能损失。在这种情况下,在不同的计算场景(如公共云或软实时系统)中,一个主要挑战是了解给定的管理操作对每个应用程序的性能影响(相对于其孤立的执行)。有了这个目标,在这项工作中,我们提出了一种基于神经网络的方法,该方法可以估计应用程序在独立于多程序执行时的性能。实验结果表明,该方案能够动态适应应用行为的变化。平均而言,MAPE和MSE的预测性能偏差分别为11.7%和2.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neural Network to Estimate Isolated Performance from Multi-Program Execution
When multiple applications are running on a platform with shared resources like multicore CPUs, the behaviour of the running application can be altered by the co-runners. In this case, the system resources need to be managed (e.g. by repartitioning the cache space, re-schedule applications in distinct cores, modifying the prefetcher configuration, etc.) to reduce the inter-application interference in order to minimize the performance losses over isolated execution. In this context, a main challenge in different computing scenarios like the public cloud or soft real-time systems is knowing the performance impact of a given management action on each application with respect to its isolated execution. With this aim, in this work we present a neural network-based approach that estimates the performance an application would have had in isolation from multi-program executions. Experimental results show that the proposal dynamically adapts to changes in application behavior. On average, the predicted performance presents an error deviation by 11.7% and 2.3% for MAPE and MSE respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Experiments on High Performance Anomaly Detection Advancing Database System Operators with Near-Data Processing A Parallel Approximation Algorithm for the Steiner Forest Problem NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage Load Balancing of the Parallel Execution of Two Dimensional Partitioned Cellular Automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1