{"title":"GridFlow:网格计算的工作流管理","authors":"Junwei Cao, S. Jarvis, S. Saini, G. Nudd","doi":"10.1109/CCGRID.2003.1199369","DOIUrl":null,"url":null,"abstract":"Grid computing is becoming a mainstream technology for large-scale distributed resource sharing and system integration. Workflow management is emerging as one of the most important grid services. In this work, a workflow management system for grid computing, called GridFlow, is presented, including a user portal and services of both global grid workflow management and local grid sub-workflow scheduling. Simulation, execution and monitoring functionalities are provided at the global grid level, which work on top of an existing agent-based grid resource management system. At each local grid, sub-workflow scheduling and conflict management are processed on top of an existing performance prediction based task scheduling system. A fuzzy timing technique is applied to address new challenges of workflow management in a cross-domain and highly dynamic grid environment. A case study is given and corresponding results indicate that local and global grid workflow management can coordinate with each other to optimise workflow execution time and solve conflicts of interest.","PeriodicalId":433323,"journal":{"name":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"426","resultStr":"{\"title\":\"GridFlow: workflow management for grid computing\",\"authors\":\"Junwei Cao, S. Jarvis, S. Saini, G. Nudd\",\"doi\":\"10.1109/CCGRID.2003.1199369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid computing is becoming a mainstream technology for large-scale distributed resource sharing and system integration. Workflow management is emerging as one of the most important grid services. In this work, a workflow management system for grid computing, called GridFlow, is presented, including a user portal and services of both global grid workflow management and local grid sub-workflow scheduling. Simulation, execution and monitoring functionalities are provided at the global grid level, which work on top of an existing agent-based grid resource management system. At each local grid, sub-workflow scheduling and conflict management are processed on top of an existing performance prediction based task scheduling system. A fuzzy timing technique is applied to address new challenges of workflow management in a cross-domain and highly dynamic grid environment. A case study is given and corresponding results indicate that local and global grid workflow management can coordinate with each other to optimise workflow execution time and solve conflicts of interest.\",\"PeriodicalId\":433323,\"journal\":{\"name\":\"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"426\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2003.1199369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2003.1199369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grid computing is becoming a mainstream technology for large-scale distributed resource sharing and system integration. Workflow management is emerging as one of the most important grid services. In this work, a workflow management system for grid computing, called GridFlow, is presented, including a user portal and services of both global grid workflow management and local grid sub-workflow scheduling. Simulation, execution and monitoring functionalities are provided at the global grid level, which work on top of an existing agent-based grid resource management system. At each local grid, sub-workflow scheduling and conflict management are processed on top of an existing performance prediction based task scheduling system. A fuzzy timing technique is applied to address new challenges of workflow management in a cross-domain and highly dynamic grid environment. A case study is given and corresponding results indicate that local and global grid workflow management can coordinate with each other to optimise workflow execution time and solve conflicts of interest.