使用深度学习的车辆室内定位

A. Kumar, Bernd Schäufele, Daniel Becker, Oliver Sawade, I. Radusch
{"title":"使用深度学习的车辆室内定位","authors":"A. Kumar, Bernd Schäufele, Daniel Becker, Oliver Sawade, I. Radusch","doi":"10.1109/WoWMoM.2016.7523569","DOIUrl":null,"url":null,"abstract":"Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Indoor localization of vehicles using Deep Learning\",\"authors\":\"A. Kumar, Bernd Schäufele, Daniel Becker, Oliver Sawade, I. Radusch\",\"doi\":\"10.1109/WoWMoM.2016.7523569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features.\",\"PeriodicalId\":187747,\"journal\":{\"name\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2016.7523569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

现代车辆配备了许多驾驶员辅助和远程信息处理功能,如转弯导航。这些系统大多依赖于车辆的精确定位。虽然全球导航卫星系统(GNSS)在室外可用,但这些系统在室内环境(如停车场或隧道)中会失效。或者,车辆可以通过基于地标的定位和内部汽车传感器来定位自己,但这不仅成本高昂,而且需要对封闭区域有精确的了解。相反,我们的方法是使用基于基础设施的定位。在这里,我们利用安装在停车场的现成摄像头和车辆与基础设施的通信,让所有车辆都能从基于基础设施的定位服务中获得室内位置。我们的方法使用卷积神经网络(CNN)和深度学习来识别和定位停车场中的车辆。因此,我们在地下设施中启用了基于位置的驾驶辅助系统(DAS)和远程信息处理。我们将新的深度学习分类器与使用haar样特征的传统分类器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor localization of vehicles using Deep Learning
Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validations of bandwidth compressed multicarrier signals Asynchronous reputation systems in device-to-device ecosystems Measurement-based study on the influence of localization errors on estimated shadow correlations An autonomous diagnostic tool for the WirelessHART industrial standard Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1