未来空间科学任务的通用通信用户和系统要求

M. Bergmann, P. Romano, O. Koudelka, M. Wittig
{"title":"未来空间科学任务的通用通信用户和系统要求","authors":"M. Bergmann, P. Romano, O. Koudelka, M. Wittig","doi":"10.1109/IWSSC.2009.5286357","DOIUrl":null,"url":null,"abstract":"Since space missions have been flown, a proper data return to Earth was inherently required. The complexity level and the number of space experiments have increased over the last decades. As a consequence, higher data rates have been required. The most limiting factor on achievable data rates for interplanetary communications is the distance. It imposes challenges on all parts of the communication system. Communication user and system requirements must be carefully defined to fulfill the mission needs. These requirements are expected to increase in the future. Hence, we studied 13 generic future ESA space mission scenarios comprising 5 Lunar missions, 5 Mars missions, and three missions to special targets (Lagrange point L2, NEO, and the Jovian satellite Europa) based on planned and already flown missions in order to derive communication user and system requirements. These requirements were classified, scaled, adapted and validated by calculations for these missions defined in [1]. Within this paper we will present how communication user and system requirements for future space science missions can be classified, scaled and applied. Therefore, after introducing a proper classification of communication requirements we will present recommendations by means of concrete examples assuming an Asteroid Sample Return mission scenario. Some practical hints will be provided as well.","PeriodicalId":137431,"journal":{"name":"2009 International Workshop on Satellite and Space Communications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generic communication user and system requirements for future space science missions\",\"authors\":\"M. Bergmann, P. Romano, O. Koudelka, M. Wittig\",\"doi\":\"10.1109/IWSSC.2009.5286357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since space missions have been flown, a proper data return to Earth was inherently required. The complexity level and the number of space experiments have increased over the last decades. As a consequence, higher data rates have been required. The most limiting factor on achievable data rates for interplanetary communications is the distance. It imposes challenges on all parts of the communication system. Communication user and system requirements must be carefully defined to fulfill the mission needs. These requirements are expected to increase in the future. Hence, we studied 13 generic future ESA space mission scenarios comprising 5 Lunar missions, 5 Mars missions, and three missions to special targets (Lagrange point L2, NEO, and the Jovian satellite Europa) based on planned and already flown missions in order to derive communication user and system requirements. These requirements were classified, scaled, adapted and validated by calculations for these missions defined in [1]. Within this paper we will present how communication user and system requirements for future space science missions can be classified, scaled and applied. Therefore, after introducing a proper classification of communication requirements we will present recommendations by means of concrete examples assuming an Asteroid Sample Return mission scenario. Some practical hints will be provided as well.\",\"PeriodicalId\":137431,\"journal\":{\"name\":\"2009 International Workshop on Satellite and Space Communications\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Satellite and Space Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSC.2009.5286357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Satellite and Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSC.2009.5286357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

既然已经执行了太空任务,就必然需要向地球返回适当的数据。在过去的几十年里,太空实验的复杂程度和数量都有所增加。因此,需要更高的数据速率。星际通信可实现的数据速率的最大限制因素是距离。它对通信系统的各个部分都提出了挑战。必须仔细定义通信用户和系统需求,以满足任务需要。这些需求预计将来还会增加。因此,我们研究了13个通用的未来ESA太空任务场景,包括5个月球任务、5个火星任务和3个特殊目标任务(拉格朗日点L2、近地天体和木星卫星木卫二),以得出通信用户和系统需求。根据[1]中定义的这些特派团的计算,对这些需求进行分类、按比例调整和验证。在本文中,我们将介绍如何对未来空间科学任务的通信用户和系统需求进行分类、缩放和应用。因此,在介绍通信需求的适当分类之后,我们将通过具体的例子提出建议,假设小行星样本返回任务的场景。也会提供一些实用的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generic communication user and system requirements for future space science missions
Since space missions have been flown, a proper data return to Earth was inherently required. The complexity level and the number of space experiments have increased over the last decades. As a consequence, higher data rates have been required. The most limiting factor on achievable data rates for interplanetary communications is the distance. It imposes challenges on all parts of the communication system. Communication user and system requirements must be carefully defined to fulfill the mission needs. These requirements are expected to increase in the future. Hence, we studied 13 generic future ESA space mission scenarios comprising 5 Lunar missions, 5 Mars missions, and three missions to special targets (Lagrange point L2, NEO, and the Jovian satellite Europa) based on planned and already flown missions in order to derive communication user and system requirements. These requirements were classified, scaled, adapted and validated by calculations for these missions defined in [1]. Within this paper we will present how communication user and system requirements for future space science missions can be classified, scaled and applied. Therefore, after introducing a proper classification of communication requirements we will present recommendations by means of concrete examples assuming an Asteroid Sample Return mission scenario. Some practical hints will be provided as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing the snow effects on hybrid network using optical Wireless and GHz links Integration of TESLA and FLUTE over satellite networks BSM integrated PEP with cross-layer improvements Regular session 4 (room E) transport and quality of service I Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes for deep space and high data rate applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1