使用Ml算法的乳腺癌分类

Sara Shehab, A. Keshk
{"title":"使用Ml算法的乳腺癌分类","authors":"Sara Shehab, A. Keshk","doi":"10.21608/kjis.2022.159008.1010","DOIUrl":null,"url":null,"abstract":": One of the most top diseases nowadays is breast cancer that causes death for many women over the world. Breast cancer is a heterogeneous disease defined by molecular types and subtypes. Artificial intelligence has an effect role in detecting and classification the breast cancer. In this work 13 classification method are used like Support Vector Machine, AdaBoost, MLP classifier and others. This work is evaluated using three keys accuracy, cross validation score and execution time. The results detect that Linear SVC Support Vector Machine achieved high accuracy (98.25%) and Random Forest and AdaBoost achieved high cross validation score (97.01%) when compared with other classification methods. Whereas Gaussian NB classifier achieved minimum execution time (0.01 seconds). A data set with 31 feature and 570 records are used for testing the algorithms. 20% of data set will be used in testing and 80% for training. The proposed work achieves high accuracy when compared with the previous works.","PeriodicalId":115907,"journal":{"name":"Kafrelsheikh Journal of Information Sciences","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breast Cancer Classification Using Ml Algorithms\",\"authors\":\"Sara Shehab, A. Keshk\",\"doi\":\"10.21608/kjis.2022.159008.1010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": One of the most top diseases nowadays is breast cancer that causes death for many women over the world. Breast cancer is a heterogeneous disease defined by molecular types and subtypes. Artificial intelligence has an effect role in detecting and classification the breast cancer. In this work 13 classification method are used like Support Vector Machine, AdaBoost, MLP classifier and others. This work is evaluated using three keys accuracy, cross validation score and execution time. The results detect that Linear SVC Support Vector Machine achieved high accuracy (98.25%) and Random Forest and AdaBoost achieved high cross validation score (97.01%) when compared with other classification methods. Whereas Gaussian NB classifier achieved minimum execution time (0.01 seconds). A data set with 31 feature and 570 records are used for testing the algorithms. 20% of data set will be used in testing and 80% for training. The proposed work achieves high accuracy when compared with the previous works.\",\"PeriodicalId\":115907,\"journal\":{\"name\":\"Kafrelsheikh Journal of Information Sciences\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kafrelsheikh Journal of Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/kjis.2022.159008.1010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kafrelsheikh Journal of Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/kjis.2022.159008.1010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当前最严重的疾病之一是乳腺癌,它导致全世界许多妇女死亡。乳腺癌是一种由分子类型和亚型定义的异质性疾病。人工智能在乳腺癌的检测和分类中具有重要作用。本文采用了支持向量机、AdaBoost、MLP分类器等13种分类方法。这项工作是用三个关键评估准确性,交叉验证得分和执行时间。结果表明,与其他分类方法相比,线性SVC支持向量机获得了较高的准确率(98.25%),随机森林和AdaBoost获得了较高的交叉验证分数(97.01%)。而高斯NB分类器的执行时间最短(0.01秒)。使用具有31个特征和570条记录的数据集来测试算法。20%的数据集将用于测试,80%用于训练。与以往的工作相比,本文的工作达到了较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breast Cancer Classification Using Ml Algorithms
: One of the most top diseases nowadays is breast cancer that causes death for many women over the world. Breast cancer is a heterogeneous disease defined by molecular types and subtypes. Artificial intelligence has an effect role in detecting and classification the breast cancer. In this work 13 classification method are used like Support Vector Machine, AdaBoost, MLP classifier and others. This work is evaluated using three keys accuracy, cross validation score and execution time. The results detect that Linear SVC Support Vector Machine achieved high accuracy (98.25%) and Random Forest and AdaBoost achieved high cross validation score (97.01%) when compared with other classification methods. Whereas Gaussian NB classifier achieved minimum execution time (0.01 seconds). A data set with 31 feature and 570 records are used for testing the algorithms. 20% of data set will be used in testing and 80% for training. The proposed work achieves high accuracy when compared with the previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anemia Diagnosis And Prediction Based On Machine Learning Chronic Kidney Disease Classification Using ML Algorithms Cost-Efficient Method for Detecting and Mitigating DDOS Attacks in SDN Based Networks Decision Making in an Information System Via Pawlak’s Rough Approximation The classification of mushroom using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1