文本识别的马尔可夫模型顺序优化

C. Olivier, F. Jouzel, M. Avila
{"title":"文本识别的马尔可夫模型顺序优化","authors":"C. Olivier, F. Jouzel, M. Avila","doi":"10.1109/ICDAR.1997.620560","DOIUrl":null,"url":null,"abstract":"Markov models are currently used for printed or handwritten word recognition. The order k is a very important parameter of these models. The aim of this paper is to use model selection criteria in order to estimate the order of a Markov model. Akaike (1973) suggested the AIC criterion for the estimation of the order k of a parameterized statistical model, including the term k as penalization of the likelihood function. Yet, selection according to this criterion leads asymptotically to a strict overestimation of the order. That is why we suggest the use of other consistent criteria in a Markovian case: the Bayesian and the Hannan and Quinn information criteria (BIC and /spl rho/, respectively). The performance of the criteria are analysed on simulated data and on a real case: a handwritten word description. We discuss the limit of these methods in relation to the number of states in the model.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Markov model order optimization for text recognition\",\"authors\":\"C. Olivier, F. Jouzel, M. Avila\",\"doi\":\"10.1109/ICDAR.1997.620560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov models are currently used for printed or handwritten word recognition. The order k is a very important parameter of these models. The aim of this paper is to use model selection criteria in order to estimate the order of a Markov model. Akaike (1973) suggested the AIC criterion for the estimation of the order k of a parameterized statistical model, including the term k as penalization of the likelihood function. Yet, selection according to this criterion leads asymptotically to a strict overestimation of the order. That is why we suggest the use of other consistent criteria in a Markovian case: the Bayesian and the Hannan and Quinn information criteria (BIC and /spl rho/, respectively). The performance of the criteria are analysed on simulated data and on a real case: a handwritten word description. We discuss the limit of these methods in relation to the number of states in the model.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

马尔可夫模型目前用于打印或手写单词识别。k阶是这些模型的一个非常重要的参数。本文的目的是利用模型选择准则来估计马尔可夫模型的阶数。Akaike(1973)提出了估算参数化统计模型k阶的AIC准则,其中包括k项作为似然函数的惩罚项。然而,根据这一标准进行选择会逐渐导致对顺序的严格高估。这就是为什么我们建议在马尔可夫情况下使用其他一致的标准:贝叶斯和Hannan和Quinn信息标准(分别为BIC和/spl rho/)。在模拟数据和一个真实案例上分析了这些标准的性能:一个手写的单词描述。我们讨论了这些方法与模型中状态数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Markov model order optimization for text recognition
Markov models are currently used for printed or handwritten word recognition. The order k is a very important parameter of these models. The aim of this paper is to use model selection criteria in order to estimate the order of a Markov model. Akaike (1973) suggested the AIC criterion for the estimation of the order k of a parameterized statistical model, including the term k as penalization of the likelihood function. Yet, selection according to this criterion leads asymptotically to a strict overestimation of the order. That is why we suggest the use of other consistent criteria in a Markovian case: the Bayesian and the Hannan and Quinn information criteria (BIC and /spl rho/, respectively). The performance of the criteria are analysed on simulated data and on a real case: a handwritten word description. We discuss the limit of these methods in relation to the number of states in the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1