基于极大极小凹惩罚和交叉熵的高效鲁棒图学习

Tatsuya Koyakumaru, M. Yukawa
{"title":"基于极大极小凹惩罚和交叉熵的高效鲁棒图学习","authors":"Tatsuya Koyakumaru, M. Yukawa","doi":"10.23919/eusipco55093.2022.9909870","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called $\\gamma$-lasso which exploits the $\\gamma-$ cross entropy. We devise a weighting technique which designs the data weights based on the $\\ell_{1}$ distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms $\\gamma$-lasso and tlasso as well as the existing non-robust graph learning methods in contaminated situations.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Robust Graph Learning Based on Minimax Concave Penalty and $\\\\gamma$-Cross Entropy\",\"authors\":\"Tatsuya Koyakumaru, M. Yukawa\",\"doi\":\"10.23919/eusipco55093.2022.9909870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called $\\\\gamma$-lasso which exploits the $\\\\gamma-$ cross entropy. We devise a weighting technique which designs the data weights based on the $\\\\ell_{1}$ distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms $\\\\gamma$-lasso and tlasso as well as the existing non-robust graph learning methods in contaminated situations.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从污染数据中学习稀疏图的有效鲁棒方法。具体来说,使用极小极大凹惩罚的凸解析方法是使用所谓的$\gamma$-lasso来制定的,该方法利用了$\gamma$- $交叉熵。为了避免由于组合图拉普拉斯结构导致的离群值拒绝失败,我们设计了一种加权技术,除了基于马氏距离之外,还基于$\ell_{1}$距离来设计数据权重。数值算例表明,该方法在污染情况下明显优于$\gamma$-lasso和tlasso以及现有的非鲁棒图学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Robust Graph Learning Based on Minimax Concave Penalty and $\gamma$-Cross Entropy
This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called $\gamma$-lasso which exploits the $\gamma-$ cross entropy. We devise a weighting technique which designs the data weights based on the $\ell_{1}$ distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms $\gamma$-lasso and tlasso as well as the existing non-robust graph learning methods in contaminated situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1