用于假肢控制设计的肌电信号采样率动态变化分析

S. L. Kumar, M. Swathy, T. Arunkumar, M. Maniventhan, S. Vigneshwaran
{"title":"用于假肢控制设计的肌电信号采样率动态变化分析","authors":"S. L. Kumar, M. Swathy, T. Arunkumar, M. Maniventhan, S. Vigneshwaran","doi":"10.1109/ICECA55336.2022.10009107","DOIUrl":null,"url":null,"abstract":"Electromyograph (EMG)-based prosthetic devices use a classifier to identify the myoelectric signals obtained from the amputee's limb. The classifier's output then controls the movement of the prosthetic device. The spectrum of the EMG signal is known to dynamic change with muscle length. These changes are reflected in the classifier's output, and so they are an important component in constructing a strong classification system to determine the user's intent. This work presents a method for dynamically changing the sample frequency of the EMG based on the spectrum of the input myoelectric signal. The shift in sampling frequency allows for correction of muscle length variations and the resulting resilience in signal classification. The approach was successfully validated and implemented on simulated EMG. The results indicate that variations in classifier output caused by changes in muscle length may be compensated for by changes in the spectrum.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of dynamic change in sampling rate of EMG signal for designing prosthesis control\",\"authors\":\"S. L. Kumar, M. Swathy, T. Arunkumar, M. Maniventhan, S. Vigneshwaran\",\"doi\":\"10.1109/ICECA55336.2022.10009107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyograph (EMG)-based prosthetic devices use a classifier to identify the myoelectric signals obtained from the amputee's limb. The classifier's output then controls the movement of the prosthetic device. The spectrum of the EMG signal is known to dynamic change with muscle length. These changes are reflected in the classifier's output, and so they are an important component in constructing a strong classification system to determine the user's intent. This work presents a method for dynamically changing the sample frequency of the EMG based on the spectrum of the input myoelectric signal. The shift in sampling frequency allows for correction of muscle length variations and the resulting resilience in signal classification. The approach was successfully validated and implemented on simulated EMG. The results indicate that variations in classifier output caused by changes in muscle length may be compensated for by changes in the spectrum.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于肌电图(EMG)的假肢装置使用分类器来识别从截肢者的肢体获得的肌电信号。然后分类器的输出控制假肢装置的运动。肌电图信号的频谱随着肌肉长度的变化而动态变化。这些变化反映在分类器的输出中,因此它们是构建一个强大的分类系统来确定用户意图的重要组成部分。本文提出了一种基于输入肌电信号频谱动态改变肌电图采样频率的方法。采样频率的变化允许校正肌肉长度变化和由此产生的信号分类弹性。该方法在模拟肌电图上得到了成功的验证和实现。结果表明,由肌肉长度变化引起的分类器输出的变化可以通过光谱的变化来补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of dynamic change in sampling rate of EMG signal for designing prosthesis control
Electromyograph (EMG)-based prosthetic devices use a classifier to identify the myoelectric signals obtained from the amputee's limb. The classifier's output then controls the movement of the prosthetic device. The spectrum of the EMG signal is known to dynamic change with muscle length. These changes are reflected in the classifier's output, and so they are an important component in constructing a strong classification system to determine the user's intent. This work presents a method for dynamically changing the sample frequency of the EMG based on the spectrum of the input myoelectric signal. The shift in sampling frequency allows for correction of muscle length variations and the resulting resilience in signal classification. The approach was successfully validated and implemented on simulated EMG. The results indicate that variations in classifier output caused by changes in muscle length may be compensated for by changes in the spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1