基于深度学习的合成图像在工业基础设施缺陷识别中的应用

Clément Mailhé, A. Ammar, F. Chinesta
{"title":"基于深度学习的合成图像在工业基础设施缺陷识别中的应用","authors":"Clément Mailhé, A. Ammar, F. Chinesta","doi":"10.1145/3589572.3589584","DOIUrl":null,"url":null,"abstract":"The use of synthetic images in deep learning for object detection applications is recognized as a key technological lever in reducing time and cost constraints associated with data-driven processes. In this work, the applicability of training an instance recognition algorithm on a synthetic database in an industrial context is assessed based on the detection of dents in pipes. Photo-realistic artificial images are procedurally generated using a rendering software and used for the training of the YOLOv5 object recognition algorithm. Its prediction effectiveness is assessed on a small test set in different configurations to identify improvement steps towards the reliable use of artificial data in computer-vision.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the use of synthetic images in deep learning for defect recognition in industrial infrastructures\",\"authors\":\"Clément Mailhé, A. Ammar, F. Chinesta\",\"doi\":\"10.1145/3589572.3589584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of synthetic images in deep learning for object detection applications is recognized as a key technological lever in reducing time and cost constraints associated with data-driven processes. In this work, the applicability of training an instance recognition algorithm on a synthetic database in an industrial context is assessed based on the detection of dents in pipes. Photo-realistic artificial images are procedurally generated using a rendering software and used for the training of the YOLOv5 object recognition algorithm. Its prediction effectiveness is assessed on a small test set in different configurations to identify improvement steps towards the reliable use of artificial data in computer-vision.\",\"PeriodicalId\":296325,\"journal\":{\"name\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3589572.3589584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在深度学习中使用合成图像进行目标检测应用被认为是减少与数据驱动过程相关的时间和成本限制的关键技术杠杆。在这项工作中,基于管道凹痕的检测,评估了在工业背景下合成数据库上训练实例识别算法的适用性。使用渲染软件程序生成逼真的人工图像,并用于YOLOv5对象识别算法的训练。在不同配置的小测试集上评估其预测有效性,以确定在计算机视觉中可靠使用人工数据的改进步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the use of synthetic images in deep learning for defect recognition in industrial infrastructures
The use of synthetic images in deep learning for object detection applications is recognized as a key technological lever in reducing time and cost constraints associated with data-driven processes. In this work, the applicability of training an instance recognition algorithm on a synthetic database in an industrial context is assessed based on the detection of dents in pipes. Photo-realistic artificial images are procedurally generated using a rendering software and used for the training of the YOLOv5 object recognition algorithm. Its prediction effectiveness is assessed on a small test set in different configurations to identify improvement steps towards the reliable use of artificial data in computer-vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object-Based Vehicle Color Recognition in Uncontrolled Environment Detection of Fibrillatory Episodes in Atrial Fibrillation Rhythms via Topology-informed Machine Learning Structure-Enhanced Translation from PET to CT Modality with Paired GANs Multi-temporal process quality prediction based on graph neural network On-Demand Multiclass Imaging for Sample Scarcity in Industrial Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1