R-AQM:多租户数据中心中的反向ACK活动队列管理

Xinle Du, Tong Li, Lei Xu, Kai Zheng, Meng Shen, Bo Wu, Ke Xu
{"title":"R-AQM:多租户数据中心中的反向ACK活动队列管理","authors":"Xinle Du, Tong Li, Lei Xu, Kai Zheng, Meng Shen, Bo Wu, Ke Xu","doi":"10.1109/ICNP52444.2021.9651922","DOIUrl":null,"url":null,"abstract":"TCP incast has become a practical problem for high-bandwidth, low-latency transmissions, resulting in throughput degradation of up to 90% and delays of hundreds of milliseconds, severely impacting application performance. However, in virtualized multi-tenant data centers, host-based advancements in the TCP stack are hard to deploy from the operators perspective. Operators only provide infrastructure in the form of virtual machines, in which only tenants can directly modify the end-host TCP stack. In this paper, we present R-AQM, a switch-powered reverse ACK active queue management (R-AQM) mechanism for enhancing ACK-clocking effects through assisting legacy TCP. Specifically, R-AQM proactively intercepts ACKs and paces the ACK-clocked in-flight data packets, preventing TCP from suffering incast collapse. We implement and evaluate R-AQM in NS-3 simulation and NetFPGA-based hardware switch. Both simulation and testbed results show that R-AQM greatly improves TCP performance under heavy incast workloads by significantly lowering packet loss rate, reducing retransmission timeouts, and supporting 16 times (i.e., 60 → 1000) more senders. Meanwhile, the forward queuing delays are also reduced by 4.6 times.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"R-AQM: Reverse ACK Active Queue Management in Multi-tenant Data Centers\",\"authors\":\"Xinle Du, Tong Li, Lei Xu, Kai Zheng, Meng Shen, Bo Wu, Ke Xu\",\"doi\":\"10.1109/ICNP52444.2021.9651922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TCP incast has become a practical problem for high-bandwidth, low-latency transmissions, resulting in throughput degradation of up to 90% and delays of hundreds of milliseconds, severely impacting application performance. However, in virtualized multi-tenant data centers, host-based advancements in the TCP stack are hard to deploy from the operators perspective. Operators only provide infrastructure in the form of virtual machines, in which only tenants can directly modify the end-host TCP stack. In this paper, we present R-AQM, a switch-powered reverse ACK active queue management (R-AQM) mechanism for enhancing ACK-clocking effects through assisting legacy TCP. Specifically, R-AQM proactively intercepts ACKs and paces the ACK-clocked in-flight data packets, preventing TCP from suffering incast collapse. We implement and evaluate R-AQM in NS-3 simulation and NetFPGA-based hardware switch. Both simulation and testbed results show that R-AQM greatly improves TCP performance under heavy incast workloads by significantly lowering packet loss rate, reducing retransmission timeouts, and supporting 16 times (i.e., 60 → 1000) more senders. Meanwhile, the forward queuing delays are also reduced by 4.6 times.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

TCP连播已经成为高带宽、低延迟传输的一个实际问题,导致吞吐量下降高达90%,延迟达数百毫秒,严重影响应用性能。然而,在虚拟化的多租户数据中心中,从运营商的角度来看,TCP堆栈中基于主机的改进很难部署。运营商只以虚拟机的形式提供基础设施,只有租户可以直接修改终端主机TCP堆栈。在本文中,我们提出了一种开关供电的反向ACK主动队列管理(R-AQM)机制,通过辅助传统TCP来增强ACK时钟效果。具体来说,R-AQM主动拦截ack,并对飞行中的ack时钟数据包进行调整,防止TCP遭受突然崩溃。我们在NS-3仿真和基于netfpga的硬件交换机中实现并评估了R-AQM。仿真和测试结果表明,R-AQM可以显著降低丢包率,减少重传超时,并支持16倍(即60→1000)的发送方,从而大大提高TCP在重投工作负载下的性能。同时,前向排队延迟也减少了4.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R-AQM: Reverse ACK Active Queue Management in Multi-tenant Data Centers
TCP incast has become a practical problem for high-bandwidth, low-latency transmissions, resulting in throughput degradation of up to 90% and delays of hundreds of milliseconds, severely impacting application performance. However, in virtualized multi-tenant data centers, host-based advancements in the TCP stack are hard to deploy from the operators perspective. Operators only provide infrastructure in the form of virtual machines, in which only tenants can directly modify the end-host TCP stack. In this paper, we present R-AQM, a switch-powered reverse ACK active queue management (R-AQM) mechanism for enhancing ACK-clocking effects through assisting legacy TCP. Specifically, R-AQM proactively intercepts ACKs and paces the ACK-clocked in-flight data packets, preventing TCP from suffering incast collapse. We implement and evaluate R-AQM in NS-3 simulation and NetFPGA-based hardware switch. Both simulation and testbed results show that R-AQM greatly improves TCP performance under heavy incast workloads by significantly lowering packet loss rate, reducing retransmission timeouts, and supporting 16 times (i.e., 60 → 1000) more senders. Meanwhile, the forward queuing delays are also reduced by 4.6 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting WiFi AP for Simultaneous Data Dissemination among WiFi and ZigBee Devices Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends Generalizable and Interpretable Deep Learning for Network Congestion Prediction DNSonChain: Delegating Privacy-Preserved DNS Resolution to Blockchain ISP Self-Operated BGP Anomaly Detection Based on Weakly Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1