加速GPGPU架构仿真

Zhibin Yu, L. Eeckhout, Nilanjan Goswami, Tao Li, L. John, Hai Jin, Chengzhong Xu
{"title":"加速GPGPU架构仿真","authors":"Zhibin Yu, L. Eeckhout, Nilanjan Goswami, Tao Li, L. John, Hai Jin, Chengzhong Xu","doi":"10.1145/2465529.2465540","DOIUrl":null,"url":null,"abstract":"Recently, graphics processing units (GPUs) have opened up new opportunities for speeding up general-purpose parallel applications due to their massive computational power and up to hundreds of thousands of threads enabled by programming models such as CUDA. However, due to the serial nature of existing micro-architecture simulators, these massively parallel architectures and workloads need to be simulated sequentially. As a result, simulating GPGPU architectures with typical benchmarks and input data sets is extremely time-consuming. This paper addresses the GPGPU architecture simulation challenge by generating miniature, yet representative GPGPU kernels. We first summarize the static characteristics of an existing GPGPU kernel in a profile, and analyze its dynamic behavior using the novel concept of the divergence flow statistics graph (DFSG). We subsequently use a GPGPU kernel synthesizing framework to generate a miniature proxy of the original kernel, which can reduce simulation time significantly. The key idea is to reduce the number of simulated instructions by decreasing per-thread iteration counts of loops. Our experimental results show that our approach can accelerate GPGPU architecture simulation by a factor of 88X on average and up to 589X with an average IPC relative error of 5.6%.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Accelerating GPGPU architecture simulation\",\"authors\":\"Zhibin Yu, L. Eeckhout, Nilanjan Goswami, Tao Li, L. John, Hai Jin, Chengzhong Xu\",\"doi\":\"10.1145/2465529.2465540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, graphics processing units (GPUs) have opened up new opportunities for speeding up general-purpose parallel applications due to their massive computational power and up to hundreds of thousands of threads enabled by programming models such as CUDA. However, due to the serial nature of existing micro-architecture simulators, these massively parallel architectures and workloads need to be simulated sequentially. As a result, simulating GPGPU architectures with typical benchmarks and input data sets is extremely time-consuming. This paper addresses the GPGPU architecture simulation challenge by generating miniature, yet representative GPGPU kernels. We first summarize the static characteristics of an existing GPGPU kernel in a profile, and analyze its dynamic behavior using the novel concept of the divergence flow statistics graph (DFSG). We subsequently use a GPGPU kernel synthesizing framework to generate a miniature proxy of the original kernel, which can reduce simulation time significantly. The key idea is to reduce the number of simulated instructions by decreasing per-thread iteration counts of loops. Our experimental results show that our approach can accelerate GPGPU architecture simulation by a factor of 88X on average and up to 589X with an average IPC relative error of 5.6%.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

最近,图形处理单元(gpu)为加速通用并行应用程序开辟了新的机会,因为它们具有巨大的计算能力,并且通过CUDA等编程模型支持多达数十万个线程。然而,由于现有微架构模拟器的串行特性,这些大规模并行架构和工作负载需要顺序模拟。因此,使用典型基准测试和输入数据集模拟GPGPU架构非常耗时。本文通过生成具有代表性的微型GPGPU内核来解决GPGPU架构仿真的挑战。我们首先总结了现有GPGPU内核的静态特征,并利用发散流统计图(DFSG)的新概念分析了其动态行为。随后,我们使用GPGPU内核合成框架生成原始内核的微型代理,从而大大减少了仿真时间。关键思想是通过减少每个线程的循环迭代次数来减少模拟指令的数量。实验结果表明,该方法可以将GPGPU架构仿真的平均速度提高88倍,最高可达589X,平均IPC相对误差为5.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating GPGPU architecture simulation
Recently, graphics processing units (GPUs) have opened up new opportunities for speeding up general-purpose parallel applications due to their massive computational power and up to hundreds of thousands of threads enabled by programming models such as CUDA. However, due to the serial nature of existing micro-architecture simulators, these massively parallel architectures and workloads need to be simulated sequentially. As a result, simulating GPGPU architectures with typical benchmarks and input data sets is extremely time-consuming. This paper addresses the GPGPU architecture simulation challenge by generating miniature, yet representative GPGPU kernels. We first summarize the static characteristics of an existing GPGPU kernel in a profile, and analyze its dynamic behavior using the novel concept of the divergence flow statistics graph (DFSG). We subsequently use a GPGPU kernel synthesizing framework to generate a miniature proxy of the original kernel, which can reduce simulation time significantly. The key idea is to reduce the number of simulated instructions by decreasing per-thread iteration counts of loops. Our experimental results show that our approach can accelerate GPGPU architecture simulation by a factor of 88X on average and up to 589X with an average IPC relative error of 5.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1