{"title":"基于拓扑的城市网络拥塞区域控制设计","authors":"L. Tumash, C. Canudas-de-Wit, M. D. Monache","doi":"10.1109/ITSC45102.2020.9294280","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of a boundary control design for traffic evolving in a large urban network. The traffic state is described on a macroscopic scale and corresponds to the vehicle density, whose dynamics are governed by a two dimensional conservation law. We aim at designing a boundary control law such that the throughput of vehicles in a congested area is maximized. Thereby, the only knowledge we use is the network’s topology, capacities of its roads and speed limits. In order to achieve this goal, we treat a 2D equation as a set of 1D equations by introducing curvilinear coordinates satisfying special properties. The theoretical results are verified on a numerical example, where an initially fully congested area is driven to a state with maximum possible throughput.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology-based control design for congested areas in urban networks\",\"authors\":\"L. Tumash, C. Canudas-de-Wit, M. D. Monache\",\"doi\":\"10.1109/ITSC45102.2020.9294280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of a boundary control design for traffic evolving in a large urban network. The traffic state is described on a macroscopic scale and corresponds to the vehicle density, whose dynamics are governed by a two dimensional conservation law. We aim at designing a boundary control law such that the throughput of vehicles in a congested area is maximized. Thereby, the only knowledge we use is the network’s topology, capacities of its roads and speed limits. In order to achieve this goal, we treat a 2D equation as a set of 1D equations by introducing curvilinear coordinates satisfying special properties. The theoretical results are verified on a numerical example, where an initially fully congested area is driven to a state with maximum possible throughput.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology-based control design for congested areas in urban networks
This paper addresses the problem of a boundary control design for traffic evolving in a large urban network. The traffic state is described on a macroscopic scale and corresponds to the vehicle density, whose dynamics are governed by a two dimensional conservation law. We aim at designing a boundary control law such that the throughput of vehicles in a congested area is maximized. Thereby, the only knowledge we use is the network’s topology, capacities of its roads and speed limits. In order to achieve this goal, we treat a 2D equation as a set of 1D equations by introducing curvilinear coordinates satisfying special properties. The theoretical results are verified on a numerical example, where an initially fully congested area is driven to a state with maximum possible throughput.