改进聚类间方差最大法在特殊图像中的应用

Wang Na
{"title":"改进聚类间方差最大法在特殊图像中的应用","authors":"Wang Na","doi":"10.1145/3411016.3411021","DOIUrl":null,"url":null,"abstract":"Image segmentation is the basis of image understanding and analysis. Among the many image segmentation methods, the threshold segmentation method is simple and efficient, and is widely used in image segmentation. But how to find the right threshold is a tricky problem. Through the analysis of the traditional OTSU algorithm (maximum between-cluster variance), an improved OTSU algorithm is proposed for special images","PeriodicalId":251897,"journal":{"name":"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of the improved maximum between-cluster variance method in special images\",\"authors\":\"Wang Na\",\"doi\":\"10.1145/3411016.3411021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is the basis of image understanding and analysis. Among the many image segmentation methods, the threshold segmentation method is simple and efficient, and is widely used in image segmentation. But how to find the right threshold is a tricky problem. Through the analysis of the traditional OTSU algorithm (maximum between-cluster variance), an improved OTSU algorithm is proposed for special images\",\"PeriodicalId\":251897,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411016.3411021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411016.3411021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分割是图像理解和分析的基础。在众多的图像分割方法中,阈值分割方法简单高效,在图像分割中得到了广泛的应用。但是如何找到合适的阈值是一个棘手的问题。通过对传统聚类间方差最大算法的分析,提出了一种针对特殊图像的改进聚类间方差最大算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of the improved maximum between-cluster variance method in special images
Image segmentation is the basis of image understanding and analysis. Among the many image segmentation methods, the threshold segmentation method is simple and efficient, and is widely used in image segmentation. But how to find the right threshold is a tricky problem. Through the analysis of the traditional OTSU algorithm (maximum between-cluster variance), an improved OTSU algorithm is proposed for special images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relativity-Driven Optimization for Test Schedule of Spaceflight Products at Launch Site Design and Implementation of Grain Traceability Code Coding Scheme A color image edge detection method based on entropy operator A two-dimensional code security authentication method based on digital watermarking A Performance Analysis of Container Cluster Networking Alternatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1