基于CNN-Transformer模型的脑电信号分类

Jianwei Liu, Enzeng Dong, Jigang Tong, Sen Yang, Shengzhi Du
{"title":"基于CNN-Transformer模型的脑电信号分类","authors":"Jianwei Liu, Enzeng Dong, Jigang Tong, Sen Yang, Shengzhi Du","doi":"10.1109/ICMA57826.2023.10215899","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCI) based on EEG have attracted extensive research and attention worldwide, while motor imagery (MI), mental arithmetic (MA), and P300 event-related potentials are a few of the more commonly used paradigms.Vision Transformer(ViT) is a new Transformer model that has superior global processing power compared to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).In this study, we propose a hybrid CNN-Transformer based model that uses CNN to convolve EEG signals in time and space, followed by ViT for global processing, and finally optimizes the model using 10-run $\\times 10$-fold cross-validation and validates it on a publicly available dataset of 29 subjects. Final accuracies of 87.23% and 90.79% were achieved on the MI and MA tasks, respectively. Compared to other literature, the model achieved higher classification accuracies.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of EEG signals based on CNN-Transformer model\",\"authors\":\"Jianwei Liu, Enzeng Dong, Jigang Tong, Sen Yang, Shengzhi Du\",\"doi\":\"10.1109/ICMA57826.2023.10215899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interfaces (BCI) based on EEG have attracted extensive research and attention worldwide, while motor imagery (MI), mental arithmetic (MA), and P300 event-related potentials are a few of the more commonly used paradigms.Vision Transformer(ViT) is a new Transformer model that has superior global processing power compared to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).In this study, we propose a hybrid CNN-Transformer based model that uses CNN to convolve EEG signals in time and space, followed by ViT for global processing, and finally optimizes the model using 10-run $\\\\times 10$-fold cross-validation and validates it on a publicly available dataset of 29 subjects. Final accuracies of 87.23% and 90.79% were achieved on the MI and MA tasks, respectively. Compared to other literature, the model achieved higher classification accuracies.\",\"PeriodicalId\":151364,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA57826.2023.10215899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10215899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于脑电图(EEG)的脑机接口(BCI)在世界范围内引起了广泛的研究和关注,其中运动想象(MI)、心算(MA)和P300事件相关电位是比较常用的几种模式。视觉变压器(Vision Transformer, ViT)是一种新的变压器模型,与卷积神经网络(CNN)和递归神经网络(RNN)相比,它具有更强的全局处理能力。在这项研究中,我们提出了一个基于CNN- transformer的混合模型,该模型使用CNN对EEG信号进行时间和空间卷积,然后使用ViT进行全局处理,最后使用10次× 10次交叉验证对模型进行优化,并在公开可用的29个受试者数据集上进行验证。MI和MA任务的最终准确率分别为87.23%和90.79%。与其他文献相比,该模型实现了更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of EEG signals based on CNN-Transformer model
Brain-computer interfaces (BCI) based on EEG have attracted extensive research and attention worldwide, while motor imagery (MI), mental arithmetic (MA), and P300 event-related potentials are a few of the more commonly used paradigms.Vision Transformer(ViT) is a new Transformer model that has superior global processing power compared to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).In this study, we propose a hybrid CNN-Transformer based model that uses CNN to convolve EEG signals in time and space, followed by ViT for global processing, and finally optimizes the model using 10-run $\times 10$-fold cross-validation and validates it on a publicly available dataset of 29 subjects. Final accuracies of 87.23% and 90.79% were achieved on the MI and MA tasks, respectively. Compared to other literature, the model achieved higher classification accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICMA 2023 Conference Info A Parameter Fluctuation Impact Analysis Algorithm for The Control of Sealing Performance Stability Research on Composite Control Strategy of Off-Grid PV Inverter under Nonlinear Asymmetric Load A Low-Cost Skiing Motion Capture System Based on Monocular RGB Camera and MINS Fusion INS/GNSS/UWB/OD Robust Navigation Algorithm Based on Factor Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1