面向网络安全概念的关系抽取框架

Corinne L. Jones, R. A. Bridges, Kelly M. T. Huffer, J. Goodall
{"title":"面向网络安全概念的关系抽取框架","authors":"Corinne L. Jones, R. A. Bridges, Kelly M. T. Huffer, J. Goodall","doi":"10.1145/2746266.2746277","DOIUrl":null,"url":null,"abstract":"In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.","PeriodicalId":106769,"journal":{"name":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Towards a Relation Extraction Framework for Cyber-Security Concepts\",\"authors\":\"Corinne L. Jones, R. A. Bridges, Kelly M. T. Huffer, J. Goodall\",\"doi\":\"10.1145/2746266.2746277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.\",\"PeriodicalId\":106769,\"journal\":{\"name\":\"Proceedings of the 10th Annual Cyber and Information Security Research Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th Annual Cyber and Information Security Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746266.2746277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746266.2746277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

为了帮助安全分析人员获取有关其网络的信息,例如新的漏洞、利用或补丁,需要针对安全领域定制的信息检索方法。由于标记文本数据稀缺且昂贵,我们遵循半监督自然语言处理的发展,并实现了一种自引导算法,用于从文本中提取安全实体及其关系。该算法需要很少的输入数据,特别是一些关系或模式(用于识别关系的启发式),并包含一个主动学习组件,该组件向用户询问最重要的决策,以防止偏离所需的关系。在一个小型语料库上的初步测试显示了令人满意的结果,获得了0.82的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Relation Extraction Framework for Cyber-Security Concepts
In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automobile ECU Design to Avoid Data Tampering Controlling Combinatorial Complexity in Software and Malware Behavior Computation On the Design of Jamming-Aware Safety Applications in VANETs Android Malware Static Analysis Techniques OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1