分散的身份和认证系统

O. Kurbatov, Pavlo Kravchenko, N. Poluyanenko, O. Shapoval, T. Kuznetsova
{"title":"分散的身份和认证系统","authors":"O. Kurbatov, Pavlo Kravchenko, N. Poluyanenko, O. Shapoval, T. Kuznetsova","doi":"10.28925/2663-4023.2019.6.1931","DOIUrl":null,"url":null,"abstract":"This article describes an approach to identification and certification in a decentralized environment. The protocol defines the way to integrate blockchain technology and web-of-trust concepts to create a decentralized public key infrastructure with easy user ID management. The essence of the scheme is to differentiate the entire infrastructure into 2 levels: the level of certification authorities (service providers) that jointly keep track of events related to user certificates; and the level of end users, systems and applications. During creating, updating, and revoking certificates, higher-level members reach a consensus on the confirmation of transactions associated with them, which ensures a higher level of validity of the certificates and synchronization of their status between certification centers. In turn, lower-level members do not need to perform complex verification procedures for a corresponding certificate: unlike the classic X.509 architecture and web-of-trust approach, the maximum number of checks in a chain can be two. An important feature of such a system is its ability to refuse certification centers: in the case of failure and / or compromise of the keys of one certification center, other network members continue to work seamlessly with others, and blockchain technology may make it impossible to add a certificate to a center whose keys have been compromised, because all the events in the system are connected by cryptographic methods. In particular, such a system can be used on the Internet of Things. Each individual sensor must communicate properly with other components of the system as a whole. In order to enable the secure interaction of these components, they must exchange encrypted messages to verify their integrity and authenticity, the provisioning scheme of which is in the described scheme.","PeriodicalId":198390,"journal":{"name":"Cybersecurity: Education, Science, Technique","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DECENTRALIZED IDENTITY AND CERTIFICATION SYSTEM\",\"authors\":\"O. Kurbatov, Pavlo Kravchenko, N. Poluyanenko, O. Shapoval, T. Kuznetsova\",\"doi\":\"10.28925/2663-4023.2019.6.1931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes an approach to identification and certification in a decentralized environment. The protocol defines the way to integrate blockchain technology and web-of-trust concepts to create a decentralized public key infrastructure with easy user ID management. The essence of the scheme is to differentiate the entire infrastructure into 2 levels: the level of certification authorities (service providers) that jointly keep track of events related to user certificates; and the level of end users, systems and applications. During creating, updating, and revoking certificates, higher-level members reach a consensus on the confirmation of transactions associated with them, which ensures a higher level of validity of the certificates and synchronization of their status between certification centers. In turn, lower-level members do not need to perform complex verification procedures for a corresponding certificate: unlike the classic X.509 architecture and web-of-trust approach, the maximum number of checks in a chain can be two. An important feature of such a system is its ability to refuse certification centers: in the case of failure and / or compromise of the keys of one certification center, other network members continue to work seamlessly with others, and blockchain technology may make it impossible to add a certificate to a center whose keys have been compromised, because all the events in the system are connected by cryptographic methods. In particular, such a system can be used on the Internet of Things. Each individual sensor must communicate properly with other components of the system as a whole. In order to enable the secure interaction of these components, they must exchange encrypted messages to verify their integrity and authenticity, the provisioning scheme of which is in the described scheme.\",\"PeriodicalId\":198390,\"journal\":{\"name\":\"Cybersecurity: Education, Science, Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity: Education, Science, Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28925/2663-4023.2019.6.1931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity: Education, Science, Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28925/2663-4023.2019.6.1931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DECENTRALIZED IDENTITY AND CERTIFICATION SYSTEM
This article describes an approach to identification and certification in a decentralized environment. The protocol defines the way to integrate blockchain technology and web-of-trust concepts to create a decentralized public key infrastructure with easy user ID management. The essence of the scheme is to differentiate the entire infrastructure into 2 levels: the level of certification authorities (service providers) that jointly keep track of events related to user certificates; and the level of end users, systems and applications. During creating, updating, and revoking certificates, higher-level members reach a consensus on the confirmation of transactions associated with them, which ensures a higher level of validity of the certificates and synchronization of their status between certification centers. In turn, lower-level members do not need to perform complex verification procedures for a corresponding certificate: unlike the classic X.509 architecture and web-of-trust approach, the maximum number of checks in a chain can be two. An important feature of such a system is its ability to refuse certification centers: in the case of failure and / or compromise of the keys of one certification center, other network members continue to work seamlessly with others, and blockchain technology may make it impossible to add a certificate to a center whose keys have been compromised, because all the events in the system are connected by cryptographic methods. In particular, such a system can be used on the Internet of Things. Each individual sensor must communicate properly with other components of the system as a whole. In order to enable the secure interaction of these components, they must exchange encrypted messages to verify their integrity and authenticity, the provisioning scheme of which is in the described scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DESIGN OF BIOMETRIC PROTECTION AUTHENTIFICATION SYSTEM BASED ON K-AVERAGE METHOD CRYPTOVIROLOGY: SECURITY THREATS TO GUARANTEED INFORMATION SYSTEMS AND MEASURES TO COMBAT ENCRYPTION VIRUSES MODEL OF CURRENT RISK INDICATOR OF IMPLEMENTATION OF THREATS TO INFORMATION AND COMMUNICATION SYSTEMS SELECTION OF AGGREGATION OPERATORS FOR A MULTI-CRITERIA EVALUTION OF SUTABILITY OF TERRITORIES GETTING AND PROCESSING GEOPRODITIONAL DATA WITH MATLAB MAPPING TOOLBOX
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1