基于虚拟传感器的轻量化车辆行程同步参数估计与轮胎模型参数估计

F. Kohlhuber, Stefan Buechner, M. Lienkamp
{"title":"基于虚拟传感器的轻量化车辆行程同步参数估计与轮胎模型参数估计","authors":"F. Kohlhuber, Stefan Buechner, M. Lienkamp","doi":"10.1109/ICVES.2014.7063730","DOIUrl":null,"url":null,"abstract":"Vehicle dynamics controls, like yaw rate controls, need accurate values for vehicle inertial and tire parameters. Normally those can be assumed to remain nearly constant for everyday car trips, but looking at vehicles with very low curb weights, these parameters can change on a wide range due to different passenger or luggage loads. This effect is analyzed with several load scenarios. A Kalman filter based algorithm is presented that is able to determine all vehicle and tire parameters with standard sensors during random everyday trips and within short time. Therefore, an extended nonlinear vehicle model is defined that is able to represent vehicle behavior for everyday driving profiles very well. The estimator is validated using real-world steering and velocity profiles.","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"53 76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trip-synchronous parameter estimation of vehicle and tire model parameters as virtual sensor for load-sensitive lightweight vehicles\",\"authors\":\"F. Kohlhuber, Stefan Buechner, M. Lienkamp\",\"doi\":\"10.1109/ICVES.2014.7063730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle dynamics controls, like yaw rate controls, need accurate values for vehicle inertial and tire parameters. Normally those can be assumed to remain nearly constant for everyday car trips, but looking at vehicles with very low curb weights, these parameters can change on a wide range due to different passenger or luggage loads. This effect is analyzed with several load scenarios. A Kalman filter based algorithm is presented that is able to determine all vehicle and tire parameters with standard sensors during random everyday trips and within short time. Therefore, an extended nonlinear vehicle model is defined that is able to represent vehicle behavior for everyday driving profiles very well. The estimator is validated using real-world steering and velocity profiles.\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"53 76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

车辆动力学控制,如偏航率控制,需要精确的车辆惯性和轮胎参数值。通常情况下,这些参数在日常汽车行驶中几乎保持不变,但考虑到路边重量非常低的车辆,这些参数可能会因乘客或行李负载的不同而发生很大范围的变化。在几种负载情况下分析了这种影响。提出了一种基于卡尔曼滤波的算法,该算法能够在短时间内通过标准传感器在随机的日常行程中确定车辆和轮胎的所有参数。因此,定义了一个扩展的非线性车辆模型,该模型能够很好地表示车辆的日常驾驶行为。该估计器使用实际转向和速度剖面进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trip-synchronous parameter estimation of vehicle and tire model parameters as virtual sensor for load-sensitive lightweight vehicles
Vehicle dynamics controls, like yaw rate controls, need accurate values for vehicle inertial and tire parameters. Normally those can be assumed to remain nearly constant for everyday car trips, but looking at vehicles with very low curb weights, these parameters can change on a wide range due to different passenger or luggage loads. This effect is analyzed with several load scenarios. A Kalman filter based algorithm is presented that is able to determine all vehicle and tire parameters with standard sensors during random everyday trips and within short time. Therefore, an extended nonlinear vehicle model is defined that is able to represent vehicle behavior for everyday driving profiles very well. The estimator is validated using real-world steering and velocity profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of DGPS predicted corrections using dynamic neural networks Road surface classification for extended floating car data Safety system of an electric vehicle for formula racing Soundless Horn And Remote Patroller Designing vehicle tracking system - an open source approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1