N. Tayem, Ahmed A. Hussain, Vinay Reddy Veramareddy, A. Soliman, J. Alghazo
{"title":"基于实际数据的传播子生根法到达方向估计","authors":"N. Tayem, Ahmed A. Hussain, Vinay Reddy Veramareddy, A. Soliman, J. Alghazo","doi":"10.1109/MILCOM52596.2021.9653081","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel and computationally efficient DOA estimation method that works equally well for both non-coherent and coherent sources. This method is based on applying the propagator method as a linear operator to the covariance matrix of the received data taken from a single snapshot of signals impinging on a uniform linear array. A Toeplitz Hermitian data matrix is constructed and transformed to a real-valued data matrix which significantly reduces computational complexity. The propagator method obviates the need to use either eigenvalue decomposition or singular value decomposition in calculating the DOA. Finally, the Root-MUSIC method is employed in conjunction with proposed method to estimate the angles of arrivals from the received signal. Simulation results demonstrate the efficacy of the proposed method.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Propagator Rooting Method Direction of Arrival Estimation Based on Real Data\",\"authors\":\"N. Tayem, Ahmed A. Hussain, Vinay Reddy Veramareddy, A. Soliman, J. Alghazo\",\"doi\":\"10.1109/MILCOM52596.2021.9653081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel and computationally efficient DOA estimation method that works equally well for both non-coherent and coherent sources. This method is based on applying the propagator method as a linear operator to the covariance matrix of the received data taken from a single snapshot of signals impinging on a uniform linear array. A Toeplitz Hermitian data matrix is constructed and transformed to a real-valued data matrix which significantly reduces computational complexity. The propagator method obviates the need to use either eigenvalue decomposition or singular value decomposition in calculating the DOA. Finally, the Root-MUSIC method is employed in conjunction with proposed method to estimate the angles of arrivals from the received signal. Simulation results demonstrate the efficacy of the proposed method.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9653081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Propagator Rooting Method Direction of Arrival Estimation Based on Real Data
In this paper, we present a novel and computationally efficient DOA estimation method that works equally well for both non-coherent and coherent sources. This method is based on applying the propagator method as a linear operator to the covariance matrix of the received data taken from a single snapshot of signals impinging on a uniform linear array. A Toeplitz Hermitian data matrix is constructed and transformed to a real-valued data matrix which significantly reduces computational complexity. The propagator method obviates the need to use either eigenvalue decomposition or singular value decomposition in calculating the DOA. Finally, the Root-MUSIC method is employed in conjunction with proposed method to estimate the angles of arrivals from the received signal. Simulation results demonstrate the efficacy of the proposed method.