分位数向量自回归预测与压力测试

Sulkhan Chavleishvili, S. Manganelli
{"title":"分位数向量自回归预测与压力测试","authors":"Sulkhan Chavleishvili, S. Manganelli","doi":"10.2139/ssrn.3489065","DOIUrl":null,"url":null,"abstract":"A quantile vector autoregressive (VAR) model, unlike standard VAR, traces the interaction among the endogenous random variables at any quantile. Quantile forecasts are obtained by factorizing the joint distribution in a recursive structure but cannot be obtained from reduced form estimation. Identification strategies and structural quantile impulse response functions are derived as generalization of the VAR model. The model is estimated using real and financial variables for the euro area. The dynamic properties of the system change across quantiles. This is relevant for stress testing exercises, whose goal is to forecast the tail behavior of the economy when hit by large financial and real shocks.","PeriodicalId":108782,"journal":{"name":"ERN: Outlooks & Forecasting (Topic)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Forecasting and Stress Testing with Quantile Vector Autoregression\",\"authors\":\"Sulkhan Chavleishvili, S. Manganelli\",\"doi\":\"10.2139/ssrn.3489065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantile vector autoregressive (VAR) model, unlike standard VAR, traces the interaction among the endogenous random variables at any quantile. Quantile forecasts are obtained by factorizing the joint distribution in a recursive structure but cannot be obtained from reduced form estimation. Identification strategies and structural quantile impulse response functions are derived as generalization of the VAR model. The model is estimated using real and financial variables for the euro area. The dynamic properties of the system change across quantiles. This is relevant for stress testing exercises, whose goal is to forecast the tail behavior of the economy when hit by large financial and real shocks.\",\"PeriodicalId\":108782,\"journal\":{\"name\":\"ERN: Outlooks & Forecasting (Topic)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Outlooks & Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3489065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Outlooks & Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3489065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

与标准VAR不同,分位数向量自回归(VAR)模型跟踪任何分位数上内生随机变量之间的相互作用。分位数预测是通过递归结构中联合分布的因式分解得到的,而不能通过约简形式估计得到。作为VAR模型的推广,导出了识别策略和结构分位数脉冲响应函数。该模型使用欧元区的实际和金融变量进行估计。系统的动态特性在各个分位数之间发生变化。这与压力测试有关,压力测试的目标是预测经济在遭受重大金融和实际冲击时的尾部行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting and Stress Testing with Quantile Vector Autoregression
A quantile vector autoregressive (VAR) model, unlike standard VAR, traces the interaction among the endogenous random variables at any quantile. Quantile forecasts are obtained by factorizing the joint distribution in a recursive structure but cannot be obtained from reduced form estimation. Identification strategies and structural quantile impulse response functions are derived as generalization of the VAR model. The model is estimated using real and financial variables for the euro area. The dynamic properties of the system change across quantiles. This is relevant for stress testing exercises, whose goal is to forecast the tail behavior of the economy when hit by large financial and real shocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting and Stress Testing with Quantile Vector Autoregression Heuristics versus Econometrics as a Basis For Forecasting International Inflation Differentials Italia Economia a Metà 2018 (Italy: Economy in Mid-2018) A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area A Composite Index of Inflation Tendencies in the Euro Area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1