病灶皮肤分割、特征选择及分类方法的研究

Y. Filali, A. Ennouni, M. A. Sabri, A. Aarab
{"title":"病灶皮肤分割、特征选择及分类方法的研究","authors":"Y. Filali, A. Ennouni, M. A. Sabri, A. Aarab","doi":"10.1109/ISACV.2018.8354069","DOIUrl":null,"url":null,"abstract":"Among the most dangerous cancer in the world is skin cancer. If not diagnosed in early stages it might be hard to cure. The aim of this work is to present a study of skin segmentation, features selection and classification approaches. In the segmentation stage, we will present the result of the use of a pre-processing based on a multiscale decomposition model where geometrical component is used to get a good segmentation. The features are firstly extracted using the texture component and color of the lesion, and then we will present a comparative study of some features selection approaches that select the relevant ones. In feature classification we will compare between the most and good classifiers used in literature.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A study of lesion skin segmentation, features selection and classification approaches\",\"authors\":\"Y. Filali, A. Ennouni, M. A. Sabri, A. Aarab\",\"doi\":\"10.1109/ISACV.2018.8354069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most dangerous cancer in the world is skin cancer. If not diagnosed in early stages it might be hard to cure. The aim of this work is to present a study of skin segmentation, features selection and classification approaches. In the segmentation stage, we will present the result of the use of a pre-processing based on a multiscale decomposition model where geometrical component is used to get a good segmentation. The features are firstly extracted using the texture component and color of the lesion, and then we will present a comparative study of some features selection approaches that select the relevant ones. In feature classification we will compare between the most and good classifiers used in literature.\",\"PeriodicalId\":184662,\"journal\":{\"name\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2018.8354069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

皮肤癌是世界上最危险的癌症之一。如果不及早诊断,可能很难治愈。这项工作的目的是提出了皮肤分割,特征选择和分类方法的研究。在分割阶段,我们将展示使用基于多尺度分解模型的预处理的结果,其中使用几何分量来获得良好的分割。首先利用病灶的纹理成分和颜色提取特征,然后对几种选择相关特征的方法进行比较研究。在特征分类中,我们将比较文献中使用的最好和最好的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of lesion skin segmentation, features selection and classification approaches
Among the most dangerous cancer in the world is skin cancer. If not diagnosed in early stages it might be hard to cure. The aim of this work is to present a study of skin segmentation, features selection and classification approaches. In the segmentation stage, we will present the result of the use of a pre-processing based on a multiscale decomposition model where geometrical component is used to get a good segmentation. The features are firstly extracted using the texture component and color of the lesion, and then we will present a comparative study of some features selection approaches that select the relevant ones. In feature classification we will compare between the most and good classifiers used in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1