UniMelb提交给SIGMORPHON 2020共享任务0:类型学上多样的形态变化

Andreas Scherbakov
{"title":"UniMelb提交给SIGMORPHON 2020共享任务0:类型学上多样的形态变化","authors":"Andreas Scherbakov","doi":"10.18653/v1/2020.sigmorphon-1.20","DOIUrl":null,"url":null,"abstract":"The paper describes the University of Melbourne’s submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection. Our team submitted three systems in total, two neural and one non-neural. Our analysis of systems’ performance shows positive effects of newly introduced data hallucination technique that we employed in one of neural systems, especially in low-resource scenarios. A non-neural system based on observed inflection patterns shows optimistic results even in its simple implementation (>75% accuracy for 50% of languages). With possible improvement within the same modeling principle, accuracy might grow to values above 90%.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The UniMelb Submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection\",\"authors\":\"Andreas Scherbakov\",\"doi\":\"10.18653/v1/2020.sigmorphon-1.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the University of Melbourne’s submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection. Our team submitted three systems in total, two neural and one non-neural. Our analysis of systems’ performance shows positive effects of newly introduced data hallucination technique that we employed in one of neural systems, especially in low-resource scenarios. A non-neural system based on observed inflection patterns shows optimistic results even in its simple implementation (>75% accuracy for 50% of languages). With possible improvement within the same modeling principle, accuracy might grow to values above 90%.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.sigmorphon-1.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这篇论文描述了墨尔本大学提交给SIGMORPHON 2020共享任务0:类型学上多样的形态变化。我们团队总共提交了三个系统,两个神经系统和一个非神经系统。我们对系统性能的分析表明,我们在一个神经系统中采用的新引入的数据幻觉技术具有积极的效果,特别是在资源匮乏的情况下。基于观察到的屈折模式的非神经系统即使在简单的实现中也显示出乐观的结果(50%的语言有75%的准确率)。在相同的建模原则下进行可能的改进,准确度可能会增长到90%以上的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The UniMelb Submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
The paper describes the University of Melbourne’s submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection. Our team submitted three systems in total, two neural and one non-neural. Our analysis of systems’ performance shows positive effects of newly introduced data hallucination technique that we employed in one of neural systems, especially in low-resource scenarios. A non-neural system based on observed inflection patterns shows optimistic results even in its simple implementation (>75% accuracy for 50% of languages). With possible improvement within the same modeling principle, accuracy might grow to values above 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1