Shreyas Sen, Vishwanath Natarajan, R. Senguttuvan, A. Chatterjee
{"title":"Pro-VIZOR:用于无线系统的过程可调谐几乎为零边际的低功率自适应射频","authors":"Shreyas Sen, Vishwanath Natarajan, R. Senguttuvan, A. Chatterjee","doi":"10.1145/1391469.1391595","DOIUrl":null,"url":null,"abstract":"In this paper, a process tunable, continuously adaptive wireless front end architecture and related adaptation algorithms are presented that allow an RF transceiver to function at minimum power irrespective of channel conditions and process variability induced performance loss in the RF front end and baseband interface. Current wireless transceiver front ends are designed for worst case channel conditions and a limited degree of post manufacture tuning is performed to compensate for process variations. It is shown how the proposed architecture can result in significant power savings over current practice without compromising system-level bit error rate. The adaptation methodology is applied to a WLAN transceiver design and hardware measurement data for an adaptive receiver is presented.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Pro-VIZOR: Process tunable virtually zero margin low power adaptive RF for wireless systems\",\"authors\":\"Shreyas Sen, Vishwanath Natarajan, R. Senguttuvan, A. Chatterjee\",\"doi\":\"10.1145/1391469.1391595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a process tunable, continuously adaptive wireless front end architecture and related adaptation algorithms are presented that allow an RF transceiver to function at minimum power irrespective of channel conditions and process variability induced performance loss in the RF front end and baseband interface. Current wireless transceiver front ends are designed for worst case channel conditions and a limited degree of post manufacture tuning is performed to compensate for process variations. It is shown how the proposed architecture can result in significant power savings over current practice without compromising system-level bit error rate. The adaptation methodology is applied to a WLAN transceiver design and hardware measurement data for an adaptive receiver is presented.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pro-VIZOR: Process tunable virtually zero margin low power adaptive RF for wireless systems
In this paper, a process tunable, continuously adaptive wireless front end architecture and related adaptation algorithms are presented that allow an RF transceiver to function at minimum power irrespective of channel conditions and process variability induced performance loss in the RF front end and baseband interface. Current wireless transceiver front ends are designed for worst case channel conditions and a limited degree of post manufacture tuning is performed to compensate for process variations. It is shown how the proposed architecture can result in significant power savings over current practice without compromising system-level bit error rate. The adaptation methodology is applied to a WLAN transceiver design and hardware measurement data for an adaptive receiver is presented.