优化雾计算架构的绿色能耗

A. Gougeon, Benjamin Camus, Anne-Cécile Orgerie
{"title":"优化雾计算架构的绿色能耗","authors":"A. Gougeon, Benjamin Camus, Anne-Cécile Orgerie","doi":"10.1109/SBAC-PAD49847.2020.00021","DOIUrl":null,"url":null,"abstract":"The Cloud already represents an important part of the global energy consumption, and this consumption keeps increasing. Many solutions have been investigated to increase its energy efficiency and to reduce its environmental impact. However, with the introduction of new requirements, notably in terms of latency, an architecture complementary to the Cloud is emerging: the Fog. The Fog computing paradigm represents a distributed architecture closer to the end-user. Its necessity and feasibility keep being demonstrated in recent works. However, its impact on energy consumption is often neglected and the integration of renewable energy has not been considered yet. The goal of this work is to exhibit an energy-efficient Fog architecture considering the integration of renewable energy. We explore three resource allocation algorithms and three consolidation policies. Our simulation results, based on real traces, show that the intrinsic low computing capability of the nodes in a Fog context makes it harder to exploit renewable energy. In addition, the share of the consumption from the communication network between the computing resources increases in this context, and the communication devices are even harder to power through renewable sources.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimizing Green Energy Consumption of Fog Computing Architectures\",\"authors\":\"A. Gougeon, Benjamin Camus, Anne-Cécile Orgerie\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cloud already represents an important part of the global energy consumption, and this consumption keeps increasing. Many solutions have been investigated to increase its energy efficiency and to reduce its environmental impact. However, with the introduction of new requirements, notably in terms of latency, an architecture complementary to the Cloud is emerging: the Fog. The Fog computing paradigm represents a distributed architecture closer to the end-user. Its necessity and feasibility keep being demonstrated in recent works. However, its impact on energy consumption is often neglected and the integration of renewable energy has not been considered yet. The goal of this work is to exhibit an energy-efficient Fog architecture considering the integration of renewable energy. We explore three resource allocation algorithms and three consolidation policies. Our simulation results, based on real traces, show that the intrinsic low computing capability of the nodes in a Fog context makes it harder to exploit renewable energy. In addition, the share of the consumption from the communication network between the computing resources increases in this context, and the communication devices are even harder to power through renewable sources.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

云计算已经成为全球能源消耗的重要组成部分,而且这种消耗还在不断增加。已经研究了许多解决方案来提高其能源效率并减少其对环境的影响。然而,随着新需求的引入,特别是在延迟方面,一种与云互补的架构正在出现:Fog。雾计算范式代表了一种更接近最终用户的分布式架构。其必要性和可行性在近年来的工作中不断得到论证。然而,其对能源消费的影响往往被忽视,可再生能源的整合尚未得到考虑。这项工作的目标是展示一个考虑到可再生能源整合的节能雾建筑。我们探讨了三种资源分配算法和三种整合策略。基于真实轨迹的仿真结果表明,雾环境下节点固有的低计算能力使得可再生能源的开发更加困难。此外,在这种情况下,计算资源之间的通信网络的消耗份额增加了,通信设备更难通过可再生能源供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Green Energy Consumption of Fog Computing Architectures
The Cloud already represents an important part of the global energy consumption, and this consumption keeps increasing. Many solutions have been investigated to increase its energy efficiency and to reduce its environmental impact. However, with the introduction of new requirements, notably in terms of latency, an architecture complementary to the Cloud is emerging: the Fog. The Fog computing paradigm represents a distributed architecture closer to the end-user. Its necessity and feasibility keep being demonstrated in recent works. However, its impact on energy consumption is often neglected and the integration of renewable energy has not been considered yet. The goal of this work is to exhibit an energy-efficient Fog architecture considering the integration of renewable energy. We explore three resource allocation algorithms and three consolidation policies. Our simulation results, based on real traces, show that the intrinsic low computing capability of the nodes in a Fog context makes it harder to exploit renewable energy. In addition, the share of the consumption from the communication network between the computing resources increases in this context, and the communication devices are even harder to power through renewable sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Loop Scheduling Mechanisms on Julia Multithreading Reliable and Energy-aware Mapping of Streaming Series-parallel Applications onto Hierarchical Platforms High-Performance Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution Energy-Efficient Time Series Analysis Using Transprecision Computing On-chip Parallel Photonic Reservoir Computing using Multiple Delay Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1