基于原型的聚类方法比较分析

Rexhep Rada, Erind Bedalli, Sokol Shurdhi, B. Çiço
{"title":"基于原型的聚类方法比较分析","authors":"Rexhep Rada, Erind Bedalli, Sokol Shurdhi, B. Çiço","doi":"10.1109/MECO58584.2023.10154917","DOIUrl":null,"url":null,"abstract":"In the machine learning domain, clustering is a fundamental unsupervised learning operation which aims to partition the instances of a dataset into clusters (i.e, groups, subsets) such that instances within the same cluster are much similar to each other and much different from the other clusters. In the broad spectrum of clustering methods, prototype-based methods characterize each cluster through a prototype (i.e. centroid) and a relocation scheme is employed to iteratively redistribute the instances into the clusters, guided by an objective function. In this paper, several prototype-based methods are brought into focus, including K-means, K-medoids, K-medians, Fuzzy C-means and Kernel K-means. These algorithms are experimentally analyzed on several original benchmark datasets, distorted benchmark datasets and synthetic datasets. The comparative analysis is oriented in two main aspects: accuracy and sensitivity to noise and outliers.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis on prototype-based clustering methods\",\"authors\":\"Rexhep Rada, Erind Bedalli, Sokol Shurdhi, B. Çiço\",\"doi\":\"10.1109/MECO58584.2023.10154917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the machine learning domain, clustering is a fundamental unsupervised learning operation which aims to partition the instances of a dataset into clusters (i.e, groups, subsets) such that instances within the same cluster are much similar to each other and much different from the other clusters. In the broad spectrum of clustering methods, prototype-based methods characterize each cluster through a prototype (i.e. centroid) and a relocation scheme is employed to iteratively redistribute the instances into the clusters, guided by an objective function. In this paper, several prototype-based methods are brought into focus, including K-means, K-medoids, K-medians, Fuzzy C-means and Kernel K-means. These algorithms are experimentally analyzed on several original benchmark datasets, distorted benchmark datasets and synthetic datasets. The comparative analysis is oriented in two main aspects: accuracy and sensitivity to noise and outliers.\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10154917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10154917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习领域,聚类是一种基本的无监督学习操作,旨在将数据集的实例划分为集群(即组,子集),使同一集群中的实例彼此非常相似,而与其他集群有很大不同。在广泛的聚类方法中,基于原型的方法通过原型(即质心)来表征每个聚类,并采用一种重新定位方案,在目标函数的指导下将实例迭代地重新分配到聚类中。本文重点介绍了几种基于原型的方法,包括K-means、k - medium、k -median、Fuzzy C-means和Kernel K-means。在原始基准数据集、扭曲基准数据集和合成数据集上对这些算法进行了实验分析。比较分析主要集中在两个方面:准确性和对噪声和异常值的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative analysis on prototype-based clustering methods
In the machine learning domain, clustering is a fundamental unsupervised learning operation which aims to partition the instances of a dataset into clusters (i.e, groups, subsets) such that instances within the same cluster are much similar to each other and much different from the other clusters. In the broad spectrum of clustering methods, prototype-based methods characterize each cluster through a prototype (i.e. centroid) and a relocation scheme is employed to iteratively redistribute the instances into the clusters, guided by an objective function. In this paper, several prototype-based methods are brought into focus, including K-means, K-medoids, K-medians, Fuzzy C-means and Kernel K-means. These algorithms are experimentally analyzed on several original benchmark datasets, distorted benchmark datasets and synthetic datasets. The comparative analysis is oriented in two main aspects: accuracy and sensitivity to noise and outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1